Ovine herpesvirus-2-encoded microRNAs target virus genes involved in virus latency Free

Abstract

Herpesviruses encode microRNAs (miRNAs) that target both virus and host genes; however, their role in herpesvirus biology is understood poorly. We identified previously eight miRNAs encoded by ovine herpesvirus-2 (OvHV-2), the causative agent of malignant catarrhal fever (MCF), and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF20 (cell cycle inhibition), ORF50 (reactivation) and ORF73 (latency maintenance) each contain predicted targets for several OvHV-2 miRNAs. Co-transfection of miRNA mimics with luciferase reporter constructs containing the predicted targets showed the 5′ UTRs of ORF20 and ORF73 contain functional targets for ovhv-miR-2 and ovhv2-miR-8, respectively, and the 3′ UTR of ORF50 contains a functional target for ovhv2-miR-5. Transfection of BJ1035 cells (an OvHV-2-infected bovine T-cell line) with the relevant miRNA mimic resulted in a significant decrease in ORF50 and a smaller but non-significant decrease in ORF20. However, we were unable to demonstrate a decrease in ORF73. MCF is a disease of dysregulated lymphocyte proliferation; miRNA inhibition of ORF20 expression may play a role in this aberrant lymphocyte proliferation. The proteins encoded by ORF50 and ORF73 play opposing roles in latency. It has been hypothesized that miRNA-induced inhibition of virus genes acts to ensure that fluctuations in virus mRNA levels do not result in reactivation under conditions that are unfavourable for viral replication and our data supported this hypothesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059303-0
2014-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/472.html?itemId=/content/journal/jgv/10.1099/vir.0.059303-0&mimeType=html&fmt=ahah

References

  1. Ackermann M. 2006; Pathogenesis of gammaherpesvirus infections. Vet Microbiol 113:211–222 [View Article][PubMed]
    [Google Scholar]
  2. Bartel D. P. 2009; MicroRNAs: target recognition and regulatory functions. Cell 136:215–233 [View Article][PubMed]
    [Google Scholar]
  3. Bellare P., Ganem D. 2009; Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 6:570–575 [View Article][PubMed]
    [Google Scholar]
  4. Cook C. G., Splitter G. A. 1988; Lytic function of bovine lymphokine-activated killer cells from a normal and a malignant catarrhal fever virus-infected animal. Vet Immunol Immunopathol 19:105–118 [View Article][PubMed]
    [Google Scholar]
  5. Coulter L. J., Reid H. W. 2002; Isolation and expression of three open reading frames from ovine herpesvirus-2. J Gen Virol 83:533–543
    [Google Scholar]
  6. Feederle R., Linnstaedt S. D., Bannert H., Lips H., Bencun M., Cullen B. R., Delecluse H.-J. 2011a; A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7:e1001294 [View Article][PubMed]
    [Google Scholar]
  7. Feederle R., Haar J., Bernhardt K., Linnstaedt S. D., Bannert H., Lips H., Cullen B. R., Delecluse H.-J. 2011b; The members of an Epstein-Barr virus microRNA cluster cooperate to transform B lymphocytes. J Virol 85:9801–9810 [View Article][PubMed]
    [Google Scholar]
  8. Gossner A. G., Bennet N., Hunter N., Hopkins J. 2009; Differential expression of Prnp and Sprn in scrapie infected sheep also reveals Prnp genotype specific differences. Biochem Biophys Res Commun 378:862–866 [View Article][PubMed]
    [Google Scholar]
  9. Gottwein E., Cullen B. R. 2010; A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol 84:5229–5237 [View Article][PubMed]
    [Google Scholar]
  10. Grey F., Tirabassi R., Meyers H., Wu G., McWeeney S., Hook L., Nelson J. A. 2010; A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6:e1000967 [View Article][PubMed]
    [Google Scholar]
  11. Grundhoff A., Sullivan C. S. 2011; Virus-encoded microRNAs. Virology 411:325–343 [View Article][PubMed]
    [Google Scholar]
  12. Hart J., Ackermann M., Jayawardane G., Russell G., Haig D. M., Reid H., Stewart J. P. 2007; Complete sequence and analysis of the ovine herpesvirus 2 genome. J Gen Virol 88:28–39 [View Article][PubMed]
    [Google Scholar]
  13. Lee K. S., Suarez A. L., Claypool D. J., Armstrong T. K., Buckingham E. M., van Dyk L. F. 2012; Viral cyclins mediate separate phases of infection by integrating functions of distinct mammalian cyclins. PLoS Pathog 8:e1002496 [View Article][PubMed]
    [Google Scholar]
  14. Levy C. S., Hopkins J., Russell G. C., Dalziel R. G. 2012; Novel virus-encoded microRNA molecules expressed by ovine herpesvirus 2-immortalized bovine T-cells. J Gen Virol 93:150–154 [View Article][PubMed]
    [Google Scholar]
  15. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  16. Meier-Trummer C. S., Ryf B., Ackermann M. 2010; Identification of peripheral blood mononuclear cells targeted by ovine herpesvirus-2 in sheep. Vet Microbiol 141:199–207 [View Article][PubMed]
    [Google Scholar]
  17. Nascimento R., Dias J. D., Parkhouse R. M. E. 2009; The conserved UL24 family of human alpha, beta and gamma herpesviruses induces cell cycle arrest and inactivation of the cyclinB/cdc2 complex. Arch Virol 154:1143–1149 [View Article][PubMed]
    [Google Scholar]
  18. Nascimento R., Costa H., Dias J. D., Parkhouse R. M. E. 2011; MHV-68 Open Reading Frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol 156:375–386 [View Article][PubMed]
    [Google Scholar]
  19. Nelson D. D., Davis W. C., Brown W. C., Li H., O’Toole D., Oaks J. L. 2010; CD8+/perforin+/WC1 gammadelta T cells, not CD8+ alphabeta T cells, infiltrate vasculitis lesions of American bison (Bison bison) with experimental sheep-associated malignant catarrhal fever. Vet Immunol Immunopathol 136:284–291 [View Article][PubMed]
    [Google Scholar]
  20. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R. 2004; Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517 [View Article][PubMed]
    [Google Scholar]
  21. Reid H. W., Buxton D., Pow I., Finlayson J. 1989; Isolation and characterisation of lymphoblastoid cells from cattle and deer affected with ‘sheep-associated’ malignant catarrhal fever. Res Vet Sci 47:90–96[PubMed]
    [Google Scholar]
  22. Riley K. J., Rabinowitz G. S., Yario T. A., Luna J. M., Darnell R. B., Steitz J. A. 2012; EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221 [View Article][PubMed]
    [Google Scholar]
  23. Rosbottom J., Dalziel R. G., Reid H. W., Stewart J. P. 2002; Ovine herpesvirus 2 lytic cycle replication and capsid production. J Gen Virol 83:2999–3002[PubMed]
    [Google Scholar]
  24. Russell G. C., Stewart J. P., Haig D. M. 2009; Malignant catarrhal fever: a review. Vet J 179:324–335 [View Article][PubMed]
    [Google Scholar]
  25. Schock A., Collins R. A., Reid H. W. 1998; Phenotype, growth regulation and cytokine transcription in Ovine Herpesvirus-2 (OHV-2)-infected bovine T-cell lines. Vet Immunol Immunopathol 66:67–81 [View Article][PubMed]
    [Google Scholar]
  26. Seto E., Moosmann A., Grömminger S., Walz N., Grundhoff A., Hammerschmidt W. 2010; Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 6:e1001063 [View Article][PubMed]
    [Google Scholar]
  27. Tay Y., Zhang J. Q., Thomson A. M., Lim B., Rigoutsos I. 2008; MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–U1112 [View Article][PubMed]
    [Google Scholar]
  28. Thonur L., Russell G. C., Stewart J. P., Haig D. M. 2006; Differential transcription of ovine herpesvirus 2 genes in lymphocytes from reservoir and susceptible species. Virus Genes 32:27–35 [View Article][PubMed]
    [Google Scholar]
  29. Zhao Y., Xu H., Yao Y., Smith L. P., Kgosana L., Green J., Petherbridge L., Baigent S. J., Nair V. 2011; Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek’s disease lymphomas. PLoS Pathog 7:e1001305 [View Article][PubMed]
    [Google Scholar]
  30. Ziegelbauer J. M., Sullivan C. S., Ganem D. 2009; Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059303-0
Loading
/content/journal/jgv/10.1099/vir.0.059303-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed