1887

Abstract

Pigs can be severely harmed by influenza, and represent important reservoir hosts, in which new human pathogens such as the recent pandemic swine-origin H1N1 influenza A virus can arise by mutation and reassortment of genome segments. To obtain novel, safe influenza vaccines for pigs, and to investigate the antigen-specific immune response, we modified an established live-virus vaccine against Aujeszky’s disease of swine, pseudorabies virus (PrV) strain Bartha (PrV-Ba), to serve as vector for the expression of haemagglutinin (HA) of swine-origin H1N1 virus. To facilitate transgene insertion, the genome of PrV-Ba was cloned as a bacterial artificial chromosome. HA expression occurred under control of the human or murine cytomegalovirus immediate early promoters (P-HCMV, P-MCMV), but could be substantially enhanced by synthetic introns and adaptation of the codon usage to that of PrV. However, despite abundant expression, the heterologous glycoprotein was not detectably incorporated into mature PrV particles. Replication of HA-expressing PrV in cell culture was only slightly affected compared to that of the parental virus strain. A single immunization of pigs with the PrV vector expressing the codon-optimized HA gene under control of P-MCMV induced high levels of HA-specific antibodies. The vaccinated animals were protected from clinical signs after challenge with a related swine-origin H1N1 influenza A virus, and challenge virus shedding was significantly reduced.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059253-0
2014-04-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/948.html?itemId=/content/journal/jgv/10.1099/vir.0.059253-0&mimeType=html&fmt=ahah

References

  1. Babiuk S., Masic A., Graham J., Neufeld J., van der Loop M., Copps J., Berhane Y., Pasick J., Potter A.. & other authors ( 2011; ). An elastase-dependent attenuated heterologous swine influenza virus protects against pandemic H1N1 2009 influenza challenge in swine. . Vaccine 29:, 3118–3123. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bartha A.. ( 1961; ). Experimental reduction of virulence of Aujeszky’s disease virus. . Magy Állatorv Lapja 16:, 42–45.
    [Google Scholar]
  3. Dorsch-Häsler K., Keil G. M., Weber F., Jasin M., Schaffner W., Koszinowski U. H.. ( 1985; ). A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. . Proc Natl Acad Sci U S A 82:, 8325–8329. [CrossRef] [PubMed]
    [Google Scholar]
  4. Fuchs W., Klupp B. G., Granzow H., Hengartner C., Brack A., Mundt A., Enquist L. W., Mettenleiter T. C.. ( 2002; ). Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49. . J Virol 76:, 8208–8217. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fuchs W., Backovic M., Klupp B. G., Rey F. A., Mettenleiter T. C.. ( 2012; ). Structure-based mutational analysis of the highly conserved domain IV of glycoprotein H of pseudorabies virus. . J Virol 86:, 8002–8013. [CrossRef] [PubMed]
    [Google Scholar]
  6. Furuse Y., Shimabukuro K., Odagiri T., Sawayama R., Okada T., Khandaker I., Suzuki A., Oshitani H.. ( 2010; ). Comparison of selection pressures on the HA gene of pandemic (2009) and seasonal human and swine influenza A H1 subtype viruses. . Virology 405:, 314–321. [CrossRef] [PubMed]
    [Google Scholar]
  7. Garten R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., Sessions W. M., Xu X., Skepner E.. & other authors ( 2009; ). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. . Science 325:, 197–201. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gorres J. P., Lager K. M., Kong W. P., Royals M., Todd J. P., Vincent A. L., Wei C. J., Loving C. L., Zanella E. L.. & other authors ( 2011; ). DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs. . Clin Vaccine Immunol 18:, 1987–1995. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hoffmann B., Harder T., Lange E., Kalthoff D., Reimann I., Grund C., Oehme R., Vahlenkamp T. W., Beer M.. ( 2010; ). New real-time reverse transcriptase polymerase chain reactions facilitate detection and differentiation of novel A/H1N1 influenza virus in porcine and human samples. . Berl Munch Tierarztl Wochenschr 123:, 286–292.[PubMed]
    [Google Scholar]
  10. Jiang Y., Fang L., Xiao S., Zhang H., Pan Y., Luo R., Li B., Chen H.. ( 2007; ). Immunogenicity and protective efficacy of recombinant pseudorabies virus expressing the two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus. . Vaccine 25:, 547–560. [CrossRef] [PubMed]
    [Google Scholar]
  11. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E., J.. (editors) ( 2012; ).; Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. San Diego:: Elsevier Academic Press;.
    [Google Scholar]
  12. Klupp B. G., Granzow H., Mettenleiter T. C.. ( 2000; ). Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. . J Virol 74:, 10063–10073. [CrossRef] [PubMed]
    [Google Scholar]
  13. Klupp B. G., Hengartner C. J., Mettenleiter T. C., Enquist L. W.. ( 2004; ). Complete, annotated sequence of the pseudorabies virus genome. . J Virol 78:, 424–440. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kopp M., Granzow H., Fuchs W., Klupp B. G., Mundt E., Karger A., Mettenleiter T. C.. ( 2003; ). The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. . J Virol 77:, 5339–5351. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lange E., Kalthoff D., Blohm U., Teifke J. P., Breithaupt A., Maresch C., Starick E., Fereidouni S., Hoffmann B.. & other authors ( 2009; ). Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. . J Gen Virol 90:, 2119–2123. [CrossRef] [PubMed]
    [Google Scholar]
  16. Le Hir H., Nott A., Moore M. J.. ( 2003; ). How introns influence and enhance eukaryotic gene expression. . Trends Biochem Sci 28:, 215–220. [CrossRef] [PubMed]
    [Google Scholar]
  17. Li Y., Reddy K., Reid S. M., Cox W. J., Brown I. H., Britton P., Nair V., Iqbal M.. ( 2011; ). Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic H7N1 avian influenza and Marek’s disease. . Vaccine 29:, 8257–8266. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lomniczi B., Watanabe S., Ben-Porat T., Kaplan A. S.. ( 1987; ). Genome location and identification of functions defective in the Bartha vaccine strain of pseudorabies virus. . J Virol 61:, 796–801.[PubMed]
    [Google Scholar]
  19. Ma W., Richt J. A.. ( 2010; ). Swine influenza vaccines: current status and future perspectives. . Anim Health Res Rev 11:, 81–96. [CrossRef] [PubMed]
    [Google Scholar]
  20. Mettenleiter T. C.. ( 1989; ). Glycoprotein gIII deletion mutants of pseudorabies virus are impaired in virus entry. . Virology 171:, 623–625. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mettenleiter T. C.. ( 2000; ). Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis state of the art, June 1999. . Vet Res 31:, 99–115. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mettenleiter T. C.. ( 2002; ). Herpesvirus assembly and egress. . J Virol 76:, 1537–1547. [CrossRef] [PubMed]
    [Google Scholar]
  23. Müller T., Hahn E. C., Tottewitz F., Kramer M., Klupp B. G., Mettenleiter T. C., Freuling C.. ( 2011; ). Pseudorabies virus in wild swine: a global perspective. . Arch Virol 156:, 1691–1705. [CrossRef] [PubMed]
    [Google Scholar]
  24. O’Connor M., Peifer M., Bender W.. ( 1989; ). Construction of large DNA segments in Escherichia coli . . Science 244:, 1307–1312. [CrossRef] [PubMed]
    [Google Scholar]
  25. Palese P., Shaw M. L.. ( 2007; ). Orthomyxoviridae: the viruses and their replication. . In Fields virology, , 5th edn., pp. 1647–1689. Edited by Knipe D. M., Howley P. M... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  26. Pavlova S. P., Veits J., Keil G. M., Mettenleiter T. C., Fuchs W.. ( 2009; ). Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase. . Vaccine 27:, 773–785. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pena L., Vincent A. L., Ye J., Ciacci-Zanella J. R., Angel M., Lorusso A., Gauger P. C., Janke B. H., Loving C. L., Perez D. R.. ( 2011; ). Modifications in the polymerase genes of a swine-like triple-reassortant influenza virus to generate live attenuated vaccines against 2009 pandemic H1N1 viruses. . J Virol 85:, 456–469. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pomeranz L. E., Reynolds A. E., Hengartner C. J.. ( 2005; ). Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. . Microbiol Mol Biol Rev 69:, 462–500. [CrossRef] [PubMed]
    [Google Scholar]
  29. Qian P., Li X. M., Jin M. L., Peng G. Q., Chen H. C.. ( 2004; ). An approach to a FMD vaccine based on genetic engineered attenuated pseudorabies virus: one experiment using VP1 gene alone generates an antibody responds on FMD and pseudorabies in swine. . Vaccine 22:, 2129–2136. [CrossRef] [PubMed]
    [Google Scholar]
  30. Reed L. J., Muench H.. ( 1938; ). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  31. Said A., Damiani A., Ma G., Kalthoff D., Beer M., Osterrieder N.. ( 2011; ). An equine herpesvirus 1 (EHV-1) vectored H1 vaccine protects against challenge with swine-origin influenza virus H1N1. . Vet Microbiol 154:, 113–123. [CrossRef] [PubMed]
    [Google Scholar]
  32. Said A., Lange E., Beer M., Damiani A., Osterrieder N.. ( 2013; ). Recombinant equine herpesvirus 1 (EHV-1) vaccine protects pigs against challenge with influenza A(H1N1)pmd09. . Virus Res 173:, 371–376. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sedegah M., Chiang C. H., Weiss W. R., Mellouk S., Cochran M. D., Houghten R. A., Beaudoin R. L., Smith D., Hoffman S. L.. ( 1992; ). Recombinant pseudorabies virus carrying a plasmodium gene: herpesvirus as a new live viral vector for inducing T- and B-cell immunity. . Vaccine 10:, 578–584. [CrossRef] [PubMed]
    [Google Scholar]
  34. Shu M., Taddeo B., Zhang W., Roizman B.. ( 2013; ). Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. . Proc Natl Acad Sci U S A 110:, E1669–E1675. [CrossRef] [PubMed]
    [Google Scholar]
  35. Smith G. J., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J.. & other authors ( 2009; ). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. . Nature 459:, 1122–1125. [CrossRef] [PubMed]
    [Google Scholar]
  36. Szpara M. L., Tafuri Y. R., Parsons L., Shamim S. R., Verstrepen K. J., Legendre M., Enquist L. W.. ( 2011; ). A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. . PLoS Pathog 7:, e1002282. [CrossRef] [PubMed]
    [Google Scholar]
  37. Taylor J., Weinberg R., Kawaoka Y., Webster R. G., Paoletti E.. ( 1988; ). Protective immunity against avian influenza induced by a fowlpox virus recombinant. . Vaccine 6:, 504–508. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tenbusch M., Grunwald T., Niezold T., Storcksdieck Genannt Bonsmann M., Hannaman D., Norley S., Uberla K.. ( 2010; ). Codon-optimization of the hemagglutinin gene from the novel swine origin H1N1 influenza virus has differential effects on CD4(+) T-cell responses and immune effector mechanisms following DNA electroporation in mice. . Vaccine 28:, 3273–3277. [CrossRef] [PubMed]
    [Google Scholar]
  39. Thomsen D. R., Marchioli C. C., Yancey R. J. Jr, Post L. E.. ( 1987a; ). Replication and virulence of pseudorabies virus mutants lacking glycoprotein gX. . J Virol 61:, 229–232.[PubMed]
    [Google Scholar]
  40. Thomsen D. R., Marotti K. R., Palermo D. P., Post L. E.. ( 1987b; ). Pseudorabies virus as a live virus vector for expression of foreign genes. . Gene 57:, 261–265. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tian Z. J., Zhou G. H., Zheng B. L., Qiu H. J., Ni J. Q., Yang H. L., Yin X. N., Hu S. P., Tong G. Z.. ( 2006; ). A recombinant pseudorabies virus encoding the HA gene from H3N2 subtype swine influenza virus protects mice from virulent challenge. . Vet Immunol Immunopathol 111:, 211–218. [CrossRef] [PubMed]
    [Google Scholar]
  42. van Oirschot J. T.. ( 1999; ). Diva vaccines that reduce virus transmission. . J Biotechnol 73:, 195–205. [CrossRef] [PubMed]
    [Google Scholar]
  43. Van Reeth K.. ( 2007; ). Avian and swine influenza viruses: our current understanding of the zoonotic risk. . Vet Res 38:, 243–260. [CrossRef] [PubMed]
    [Google Scholar]
  44. van Zijl M., Wensvoort G., de Kluyver E., Hulst M., van der Gulden H., Gielkens A., Berns A., Moormann R.. ( 1991; ). Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. . J Virol 65:, 2761–2765.[PubMed]
    [Google Scholar]
  45. Veits J., Wiesner D., Fuchs W., Hoffmann B., Granzow H., Starick E., Mundt E., Schirrmeier H., Mebatsion T.. & other authors ( 2006; ). Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. . Proc Natl Acad Sci U S A 103:, 8197–8202. [CrossRef] [PubMed]
    [Google Scholar]
  46. Vincent A. L., Ciacci-Zanella J. R., Lorusso A., Gauger P. C., Zanella E. L., Kehrli M. E. Jr, Janke B. H., Lager K. M.. ( 2010; ). Efficacy of inactivated swine influenza virus vaccines against the 2009 A/H1N1 influenza virus in pigs. . Vaccine 28:, 2782–2787. [CrossRef] [PubMed]
    [Google Scholar]
  47. Vincent A. L., Ma W., Lager K. M., Richt J. A., Janke B. H., Sandbulte M. R., Gauger P. C., Loving C. L., Webby R. J., García-Sastre A.. ( 2012; ). Live attenuated influenza vaccine provides superior protection from heterologous infection in pigs with maternal antibodies without inducing vaccine-associated enhanced respiratory disease. . J Virol 86:, 10597–10605. [CrossRef] [PubMed]
    [Google Scholar]
  48. Webster R. G., Wright S. M., Castrucci M. R., Bean W. J., Kawaoka Y.. ( 1993; ). Influenza a model of an emerging virus disease. . Intervirology 35:, 16–25.[PubMed]
    [Google Scholar]
  49. Wei F., Zhai Y., Jin H., Shang L., Men J., Lin J., Fu Z., Shi Y., Zhu X. Q.. & other authors ( 2010; ). Development and immunogenicity of a recombinant pseudorabies virus expressing Sj26GST and SjFABP from Schistosoma japonicum . . Vaccine 28:, 5161–5166. [CrossRef] [PubMed]
    [Google Scholar]
  50. Whealy M. E., Robbins A. K., Enquist L. W.. ( 1990; ). The export pathway of the pseudorabies virus gB homolog gII involves oligomer formation in the endoplasmic reticulum and protease processing in the Golgi apparatus. . J Virol 64:, 1946–1955.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059253-0
Loading
/content/journal/jgv/10.1099/vir.0.059253-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error