1887

Abstract

The emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe pulmonary disease in humans and represents the second example of a highly pathogenic coronavirus (CoV) following severe acute respiratory syndrome coronavirus (SARS-CoV). Genomic studies revealed that two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), process the polyproteins encoded by the MERS-CoV genomic RNA. We previously reported that SARS-CoV PLpro acts as both deubiquitinase (DUB) and IFN antagonist, but the function of the MERS-CoV PLpro was poorly understood. In this study, we characterized MERS-CoV PLpro, which is a protease and can recognize and process the cleavage sites (CS) of nsp1-2, nsp2-3 and nsp3-4. The LXGG consensus cleavage sites in the N terminus of pp1a/1ab, which is generally essential for CoV PLpro-mediated processing, were also characterized in MERS-CoV. MERS-CoV PLpro, like human SARS-CoV PLpro and NL63-CoV PLP2, is a viral deubiquitinating enzyme. It acts on both K48- and K63-linked ubiquitination and ISG15-linked ISGylation. We confirmed that MERS-CoV PLpro acts as an IFN antagonist through blocking the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3). These findings indicate that MERS-CoV PLpro acts as a viral DUB and suppresses production of IFN-β by an interfering IRF3-mediated signalling pathway, in addition to recognizing and processing the CS at the N terminus of replicase polyprotein to release the non-structural proteins. The characterization of proteolytic processing, DUB and IFN antagonist activities of MERS-CoV PLpro would reveal the interactions between MERS-CoV and its host, and be applicable to develop strategies targeting PLpro for the effective control of MERS-CoV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059014-0
2014-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/3/614.html?itemId=/content/journal/jgv/10.1099/vir.0.059014-0&mimeType=html&fmt=ahah

References

  1. Anderson L. J., Baric R. S.. ( 2012; ). Emerging human coronaviruses–disease potential and preparedness. . N Engl J Med 367:, 1850–1852. [CrossRef] [PubMed]
    [Google Scholar]
  2. Assiri A., McGeer A., Perl T. M., Price C. S., Al Rabeeah A. A., Cummings D. A., Alabdullatif Z. N., Assad M., Almulhim A.. & other authors ( 2013; ). Hospital outbreak of Middle East respiratory syndrome coronavirus. . N Engl J Med 369:, 407–416. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barber G. N.. ( 2011; ). Cytoplasmic DNA innate immune pathways. . Immunol Rev 243:, 99–108. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barretto N., Jukneliene D., Ratia K., Chen Z., Mesecar A. D., Baker S. C.. ( 2005; ). The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. . J Virol 79:, 15189–15198. [CrossRef] [PubMed]
    [Google Scholar]
  5. Booth C. M., Stewart T. E.. ( 2005; ). Severe acute respiratory syndrome and critical care medicine: the Toronto experience. . Crit Care Med 33: (Suppl), S53–S60. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chan J. F., Li K. S., To K. K., Cheng V. C., Chen H., Yuen K. Y.. ( 2012; ). Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic. ? J Infect 65:, 477–489. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chan R. W., Chan M. C., Agnihothram S., Chan L. L., Kuok D. I., Fong J. H., Guan Y., Poon L. L., Baric R. S.. & other authors ( 2013; ). Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. . J Virol 87:, 6604–6614. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chan-Yeung M., Xu R. H.. ( 2003; ). SARS: epidemiology. . Respirology 8: (Suppl), S9–S14. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen Z., Wang Y., Ratia K., Mesecar A. D., Wilkinson K. D., Baker S. C.. ( 2007; ). Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. . J Virol 81:, 6007–6018. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen Z., Zhou X., Lunney J. K., Lawson S., Sun Z., Brown E., Christopher-Hennings J., Knudsen D., Nelson E., Fang Y.. ( 2010; ). Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. . J Gen Virol 91:, 1047–1057. [CrossRef] [PubMed]
    [Google Scholar]
  11. Clementz M. A., Chen Z., Banach B. S., Wang Y., Sun L., Ratia K., Baez-Santos Y. M., Wang J., Takayama J.. & other authors ( 2010; ). Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. . J Virol 84:, 4619–4629. [CrossRef] [PubMed]
    [Google Scholar]
  12. Coornaert B., Carpentier I., Beyaert R.. ( 2009; ). A20: central gatekeeper in inflammation and immunity. . J Biol Chem 284:, 8217–8221. [CrossRef] [PubMed]
    [Google Scholar]
  13. de Groot R. J., Baker S. C., Baric R. S., Brown C. S., Drosten C., Enjuanes L., Fouchier R. A., Galiano M., Gorbalenya A. E.. & other authors ( 2013; ). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. . J Virol 87:, 7790–7792. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dev A., Iyer S., Razani B., Cheng G.. ( 2011; ). NF-κB and innate immunity. . Curr Top Microbiol Immunol 349:, 115–143.[PubMed]
    [Google Scholar]
  15. Devaraj S. G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C. J., Tseng C. T.. & other authors ( 2007; ). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. . J Biol Chem 282:, 32208–32221. [CrossRef] [PubMed]
    [Google Scholar]
  16. Evans P. C., Ovaa H., Hamon M., Kilshaw P. J., Hamm S., Bauer S., Ploegh H. L., Smith T. S.. ( 2004; ). Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. . Biochem J 378:, 727–734. [CrossRef] [PubMed]
    [Google Scholar]
  17. Frieman M., Ratia K., Johnston R. E., Mesecar A. D., Baric R. S.. ( 2009; ). Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. . J Virol 83:, 6689–6705. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gosert R., Kanjanahaluethai A., Egger D., Bienz K., Baker S. C.. ( 2002; ). RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. . J Virol 76:, 3697–3708. [CrossRef] [PubMed]
    [Google Scholar]
  19. Harcourt B. H., Jukneliene D., Kanjanahaluethai A., Bechill J., Severson K. M., Smith C. M., Rota P. A., Baker S. C.. ( 2004; ). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. . J Virol 78:, 13600–13612. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kanjanahaluethai A., Jukneliene D., Baker S. C.. ( 2003; ). Identification of the murine coronavirus MP1 cleavage site recognized by papain-like proteinase 2. . J Virol 77:, 7376–7382. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kanjanahaluethai A., Chen Z., Jukneliene D., Baker S. C.. ( 2007; ). Membrane topology of murine coronavirus replicase nonstructural protein 3. . Virology 361:, 391–401. [CrossRef] [PubMed]
    [Google Scholar]
  22. Katz E. J., Isasa M., Crosas B.. ( 2010; ). A new map to understand deubiquitination. . Biochem Soc Trans 38:, 21–28. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kayagaki N., Phung Q., Chan S., Chaudhari R., Quan C., O’Rourke K. M., Eby M., Pietras E., Cheng G.. & other authors ( 2007; ). DUBA: a deubiquitinase that regulates type I interferon production. . Science 318:, 1628–1632. [CrossRef] [PubMed]
    [Google Scholar]
  24. Khan G.. ( 2013; ). A novel coronavirus capable of lethal human infections: an emerging picture. . Virol J 10:, 66. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kiefer F., Arnold K., Künzli M., Bordoli L., Schwede T.. ( 2009; ). The swiss-model repository and associated resources. . Nucleic Acids Res 37: (Database), D387–D392. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kilianski A., Mielech A., Deng X., Baker S. C.. ( 2013; ). Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. . J Virol 87:, 11955–11962. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kim J. C., Spence R. A., Currier P. F., Lu X., Denison M. R.. ( 1995; ). Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. . Virology 208:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kim E. T., Oh S. E., Lee Y. O., Gibson W., Ahn J. H.. ( 2009; ). Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. . J Virol 83:, 12046–12056. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kindler E., Jónsdóttir H. R., Muth D., Hamming O. J., Hartmann R., Rodriguez R., Geffers R., Fouchier R. A., Drosten C.. & other authors ( 2013; ). Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. . MBio 4:, e00611–e00612. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lau S. K., Li K. S., Tsang A. K., Lam C. S., Ahmed S., Chen H., Chan K. H., Woo P. C., Yuen K. Y.. ( 2013; ). Genetic characterization of Betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. . J Virol 87:, 8638–8650. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lim K. P., Ng L. F., Liu D. X.. ( 2000; ). Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. . J Virol 74:, 1674–1685. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lindner H. A., Lytvyn V., Qi H., Lachance P., Ziomek E., Ménard R.. ( 2007; ). Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. . Arch Biochem Biophys 466:, 8–14. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ma A., Malynn B. A.. ( 2012; ). A20: linking a complex regulator of ubiquitylation to immunity and human disease. . Nat Rev Immunol 12:, 774–785. [CrossRef] [PubMed]
    [Google Scholar]
  34. Marsili G., Remoli A. L., Sgarbanti M., Perrotti E., Fragale A., Battistini A.. ( 2012; ). HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion. . Cytokine Growth Factor Rev 23:, 255–270. [CrossRef] [PubMed]
    [Google Scholar]
  35. Oostra M., Hagemeijer M. C., van Gent M., Bekker C. P., te Lintelo E. G., Rottier P. J., de Haan C. A.. ( 2008; ). Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. . J Virol 82:, 12392–12405. [CrossRef] [PubMed]
    [Google Scholar]
  36. Prentice E., Jerome W. G., Yoshimori T., Mizushima N., Denison M. R.. ( 2004; ). Coronavirus replication complex formation utilizes components of cellular autophagy. . J Biol Chem 279:, 10136–10141. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ratia K., Saikatendu K. S., Santarsiero B. D., Barretto N., Baker S. C., Stevens R. C., Mesecar A. D.. ( 2006; ). Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. . Proc Natl Acad Sci U S A 103:, 5717–5722. [CrossRef] [PubMed]
    [Google Scholar]
  38. Reyes-Turcu F. E., Ventii K. H., Wilkinson K. D.. ( 2009; ). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. . Annu Rev Biochem 78:, 363–397. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sawicki S. G., Sawicki D. L., Younker D., Meyer Y., Thiel V., Stokes H., Siddell S. G.. ( 2005; ). Functional and genetic analysis of coronavirus replicase-transcriptase proteins. . PLoS Pathog 1:, e39. [CrossRef] [PubMed]
    [Google Scholar]
  40. Snijder E. J., van der Meer Y., Zevenhoven-Dobbe J., Onderwater J. J., van der Meulen J., Koerten H. K., Mommaas A. M.. ( 2006; ). Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. . J Virol 80:, 5927–5940. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sulea T., Lindner H. A., Purisima E. O., Ménard R.. ( 2005; ). Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease. ? J Virol 79:, 4550–4551. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sulea T., Lindner H. A., Purisima E. O., Ménard R.. ( 2006; ). Binding site-based classification of coronaviral papain-like proteases. . Proteins 62:, 760–775. [CrossRef] [PubMed]
    [Google Scholar]
  43. Sun S. C.. ( 2008; ). Deubiquitylation and regulation of the immune response. . Nat Rev Immunol 8:, 501–511. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sun S. C.. ( 2010; ). CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. . Cell Death Differ 17:, 25–34. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sun L., Yang Y., Liu D., Xing Y., Chen X., Chen Z.. ( 2010; ). Deubiquitinase activity and regulation of antiviral innate immune responses by papain-like proteases of human coronavirus NL63. . Prog Biochem Biophys 37:, 871–880. [CrossRef]
    [Google Scholar]
  46. Sun L., Xing Y., Chen X., Zheng Y., Yang Y., Nichols D. B., Clementz M. A., Banach B. S., Li K.. & other authors ( 2012; ). Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. . PLoS ONE 7:, e30802. [CrossRef] [PubMed]
    [Google Scholar]
  47. van Boheemen S., de Graaf M., Lauber C., Bestebroer T. M., Raj V. S., Zaki A. M., Osterhaus A. D., Haagmans B. L., Gorbalenya A. E.. & other authors ( 2012; ). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. . MBio 3:, e00473-e12. [CrossRef] [PubMed]
    [Google Scholar]
  48. van der Veen A. G., Ploegh H. L.. ( 2012; ). Ubiquitin-like proteins. . Annu Rev Biochem 81:, 323–357. [CrossRef] [PubMed]
    [Google Scholar]
  49. Vaux D. L., Fidler F., Cumming G.. ( 2012; ). Replicates and repeats –what is the difference and is it significant? A brief discussion of statistics and experimental design. . EMBO Rep 13:, 291–296. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wang D., Fang L., Li P., Sun L., Fan J., Zhang Q., Luo R., Liu X., Li K.. & other authors ( 2011; ). The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. . J Virol 85:, 3758–3766. [CrossRef] [PubMed]
    [Google Scholar]
  51. Xing Y., Chen J., Tu J., Zhang B., Chen X., Shi H., Baker S. C., Feng L., Chen Z.. ( 2013; ). The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. . J Gen Virol 94:, 1554–1567. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A.. ( 2012; ). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. . N Engl J Med 367:, 1814–1820. [CrossRef] [PubMed]
    [Google Scholar]
  53. Zhao C., Denison C., Huibregtse J. M., Gygi S., Krug R. M.. ( 2005; ). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. . Proc Natl Acad Sci U S A 102:, 10200–10205. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zheng L., Baumann U., Reymond J. L.. ( 2004; ). An efficient one-step site-directed and site-saturation mutagenesis protocol. . Nucleic Acids Res 32:, e115. [CrossRef] [PubMed]
    [Google Scholar]
  55. Ziebuhr J., Schelle B., Karl N., Minskaia E., Bayer S., Siddell S. G., Gorbalenya A. E., Thiel V.. ( 2007; ). Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication. . J Virol 81:, 3922–3932. [CrossRef] [PubMed]
    [Google Scholar]
  56. Zielecki F., Weber M., Eickmann M., Spiegelberg L., Zaki A. M., Matrosovich M., Becker S., Weber F.. ( 2013; ). Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. . J Virol 87:, 5300–5304. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059014-0
Loading
/content/journal/jgv/10.1099/vir.0.059014-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error