1887

Abstract

Viral genomic RNA of the (TuYV; genus ; family ) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058867-0
2014-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/496.html?itemId=/content/journal/jgv/10.1099/vir.0.058867-0&mimeType=html&fmt=ahah

References

  1. Bechtold N., Pelletier G.. ( 1998; ). In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. . Methods Mol Biol 82:, 259–266.[PubMed]
    [Google Scholar]
  2. Brault V., van den Heuvel J. F., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J. C., Guilley H., Richards K., Jonard G.. ( 1995; ). Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. . EMBO J 14:, 650–659.[PubMed]
    [Google Scholar]
  3. Brault V., Mutterer J. D., Scheidecker D., Simonis M. T., Herrbach E., Richards K., Ziegler-Graff V.. ( 2000; ). Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. . J Virol 74:, 1140–1148. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brault V., Pfeffer S., Erdinger M., Mutterer J., Ziegler-Graff V.. ( 2002; ). Virus-induced gene silencing in transgenic plants expressing the minor capsid protein of Beet western yellows virus . . Mol Plant Microbe Interact 15:, 799–807. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brault V., Bergdoll M., Mutterer J., Prasad V., Pfeffer S., Erdinger M., Richards K. E., Ziegler-Graff V.. ( 2003; ). Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation, and aphid transmission. . J Virol 77:, 3247–3256. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bruyère A., Brault V., Ziegler-Graff V., Simonis M. T., Van den Heuvel J. F., Richards K., Guilley H., Jonard G., Herrbach E.. ( 1997; ). Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms, and aphid transmission. . Virology 230:, 323–334. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chavez J. D., Cilia M., Weisbrod C. R., Ju H.-J., Eng J. K., Gray S. M., Bruce J. E.. ( 2012; ). Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission, and virus-plant interactions. . J Proteome Res 11:, 2968–2981. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dalmay T., Rubino L., Burgyán J., Russo M.. ( 1992; ). Replication and movement of a coat protein mutant of cymbidium ringspot tombusvirus. . Mol Plant Microbe Interact 5:, 379–383. [CrossRef] [PubMed]
    [Google Scholar]
  9. Erhardt M., Herzog E., Lauber E., Fritsch C., Guilley H., Jonard G., Richards K., Bouzoubaa S.. ( 1999; ). Transgenic plants expressing the TGB1 protein of peanut clump virus complement movement of TGB1-defective peanut clump virus but not of TGB1-defective beet necrotic yellow vein virus. . Plant Cell Rep 18:, 614–619. [CrossRef]
    [Google Scholar]
  10. Esau K., Hoefert L. L.. ( 1972; ). Development of infection with beet western yellows virus in the sugarbeet. . Virology 48:, 724–738. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hipper C., Brault V., Ziegler-Graff V., Revers F.. ( 2013; ). Viral and cellular factors involved in phloem transport of plant viruses. . Front Plant Sci 4:, 154. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hofius D., Herbers K., Melzer M., Omid A., Tacke E., Wolf S., Sonnewald U.. ( 2001; ). Evidence for expression level-dependent modulation of carbohydrate status and viral resistance by the potato leafroll virus movement protein in transgenic tobacco plants. . Plant J 28:, 529–543. [CrossRef] [PubMed]
    [Google Scholar]
  13. Holsters M., Silva B., Van Vliet F., Genetello C., De Block M., Dhaese P., Depicker A., Inzé D., Engler G.. & other authors ( 1980; ). The functional organization of the nopaline A. tumefaciens plasmid pTiC58. . Plasmid 3:, 212–230. [CrossRef] [PubMed]
    [Google Scholar]
  14. Holt C. A., Beachy R. N.. ( 1991; ). In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. . Virology 181:, 109–117. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kaplan I. B., Lee L., Ripoll D. R., Palukaitis P., Gildow F., Gray S. M.. ( 2007; ). Point mutations in the potato leafroll virus major capsid protein alter virion stability and aphid transmission. . J Gen Virol 88:, 1821–1830. [CrossRef] [PubMed]
    [Google Scholar]
  16. Laemmli U. K.. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lamb J. W., Duncan G. H., Reavy B., Gildow F. E., Mayo M. A., Hay R. T.. ( 1996; ). Assembly of virus-like particles in insect cells infected with a baculovirus containing a modified coat protein gene of potato leafroll luteovirus. . J Gen Virol 77:, 1349–1358. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee L., Palukaitis P., Gray S. M.. ( 2002; ). Host-dependent requirement for the Potato leafroll virus 17-kDa protein in virus movement. . Mol Plant Microbe Interact 15:, 1086–1094. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee L., Kaplan I. B., Ripoll D. R., Liang D., Palukaitis P., Gray S. M.. ( 2005; ). A surface loop of the potato leafroll virus coat protein is involved in virion assembly, systemic movement, and aphid transmission. . J Virol 79:, 1207–1214. [CrossRef] [PubMed]
    [Google Scholar]
  20. Leiser R. M., Ziegler-Graff V., Reutenauer A., Herrbach E., Lemaire O., Guilley H., Richards K., Jonard G.. ( 1992; ). Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. . Proc Natl Acad Sci U S A 89:, 9136–9140. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mayo M. A., D’Arcy C. J.. ( 1999; ). Family Luteoviridae: a reclassification of luteoviruses. . In The Luteoviridae, pp. 15–22. Edited by Smith H. G., Barker H... Wallingford:: CABI;.
    [Google Scholar]
  22. McGeachy K. D., Barker H.. ( 2000; ). Potato mop-top virus RNA can move long distance in the absence of coat protein: evidence from resistant, transgenic plants. . Mol Plant Microbe Interact 13:, 125–128. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mutterer J. D., Stussi-Garaud C., Michler P., Richards K. E., Jonard G., Ziegler-Graff V.. ( 1999; ). Role of the beet western yellows virus readthrough protein in virus movement in Nicotiana clevelandii . . J Gen Virol 80:, 2771–2778.[PubMed]
    [Google Scholar]
  24. Osbourn J. K., Sarkar S., Wilson T. M.. ( 1990; ). Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. . Virology 179:, 921–925. [CrossRef] [PubMed]
    [Google Scholar]
  25. Peter K. A., Liang D., Palukaitis P., Gray S. M.. ( 2008; ). Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. . J Gen Virol 89:, 2037–2045. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pfeffer S., Dunoyer P., Heim F., Richards K. E., Jonard G., Ziegler-Graff V.. ( 2002; ). P0 of beet western yellows virus is a suppressor of posttranscriptional gene silencing. . J Virol 76:, 6815–6824. [CrossRef] [PubMed]
    [Google Scholar]
  27. Reutenauer A.. ( 1994; ). Etude par mutagenèse et agroinfection des fonctions des protéines codées par le virus de la jaunisse occidentale de la betterave [Studies by mutagenesis and agroinfection of the functions of the proteins coded by beet western yellows virus]. Thesis, Université Louis Pasteur, Strasbourg I;, Strasbourg, France:.
    [Google Scholar]
  28. Reutenauer A., Ziegler-Graff V., Lot H., Scheidecker D., Guilley H., Richards K., Jonard G.. ( 1993; ). Identification of beet western yellows luteovirus genes implicated in viral replication and particle morphogenesis. . Virology 195:, 692–699. [CrossRef] [PubMed]
    [Google Scholar]
  29. Saito T., Yamanaka K., Okada Y.. ( 1990; ). Long-distance movement and viral assembly of tobacco mosaic virus mutants. . Virology 176:, 329–336. [CrossRef] [PubMed]
    [Google Scholar]
  30. Savenkov E. I., Germundsson A., Zamyatnin A. A. Jr, Sandgren M., Valkonen J. P.. ( 2003; ). Potato mop-top virus: the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana . . J Gen Virol 84:, 1001–1005. [CrossRef] [PubMed]
    [Google Scholar]
  31. Schmitz J., Stussi-Garaud C., Tacke E., Prüfer D., Rohde W., Rohfritsch O.. ( 1997; ). In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. . Virology 235:, 311–322. [CrossRef] [PubMed]
    [Google Scholar]
  32. Shepardson S., Esau K., McCrum R.. ( 1980; ). Ultrastructure of potato leaf phloem infected with potato leafroll virus. . Virology 105:, 379–392. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sokolova M., Prüfer D., Tacke E., Rohde W.. ( 1997; ). The potato leafroll virus 17K movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase C. . FEBS Lett 400:, 201–205. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tacke E., Schmitz J., Prüfer D., Rohde W.. ( 1993; ). Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphipathic alpha-helix as the domain for protein/protein interactions. . Virology 197:, 274–282. [CrossRef] [PubMed]
    [Google Scholar]
  35. Terradot L., Souchet M., Tran V., Giblot Ducray-Bourdin D.. ( 2001; ). Analysis of a three-dimensional structure of Potato leafroll virus coat protein obtained by homology modeling. . Virology 286:, 72–82. [CrossRef] [PubMed]
    [Google Scholar]
  36. Torrance L.. ( 1992; ). Analysis of epitopes on potato leafroll virus capsid protein. . Virology 191:, 485–489. [CrossRef] [PubMed]
    [Google Scholar]
  37. Torrance L., Lukhovitskaya N. I., Schepetilnikov M. V., Cowan G. H., Ziegler A., Savenkov E. I.. ( 2009; ). Unusual long-distance movement strategies of Potato mop-top virus RNAs in Nicotiana benthamiana . . Mol Plant Microbe Interact 22:, 381–390. [CrossRef] [PubMed]
    [Google Scholar]
  38. Torrance L., Wright K. M., Crutzen F., Cowan G. H., Lukhovitskaya N. I., Bragard C., Savenkov E. I.. ( 2011; ). Unusual features of pomoviral RNA movement. . Front Microbiol 2:, 259. [CrossRef] [PubMed]
    [Google Scholar]
  39. van den Heuvel J. F., Boerma T. M., Peters D.. ( 1991; ). Transmission of potato leafroll virus from plants and artificial diets by Myzus persicae . . Phytopathology 81:, 150–154. [CrossRef]
    [Google Scholar]
  40. Veidt I., Bouzoubaa S. E., Leiser R. M., Ziegler-Graff V., Guilley H., Richards K., Jonard G.. ( 1992; ). Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. . Virology 186:, 192–200. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wright K. M., Cowan G. H., Lukhovitskaya N. I., Tilsner J., Roberts A. G., Savenkov E. I., Torrance L.. ( 2010; ). The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. . Mol Plant Microbe Interact 23:, 1486–1497. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ziegler-Graff V., Brault V., Mutterer J. D., Simonis M. T., Herrbach E., Guilley H., Richards K. E., Jonard G.. ( 1996; ). The coat protein of beet western yellows virus is essential for systemic infection but the viral gene products P29 and P19 are dispensable for systemic infection and aphid transmission. . Mol Plant Microbe Interact 9:, 501–510. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058867-0
Loading
/content/journal/jgv/10.1099/vir.0.058867-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error