1887

Abstract

Modified vaccinia virus Ankara (MVA) is a candidate vaccine vector that is severely attenuated due to mutations acquired during several hundred rounds of serial passage . A previous study used marker rescue to produce a set of MVA recombinants with improved replication on mammalian cells. Here, we extended the characterization of these rescued MVA strains and identified vaccinia virus (VACV) gene as a determinant of plaque morphology but not replication . F5 joins a growing group of VACV proteins that influence plaque formation more strongly than virus replication and which are disrupted in MVA. These defective genes in MVA confound the interpretation of marker rescue experiments designed to map mutations responsible for the attenuation of this important VACV strain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058495-0
2014-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/466.html?itemId=/content/journal/jgv/10.1099/vir.0.058495-0&mimeType=html&fmt=ahah

References

  1. Antoine G., Scheiflinger F., Dorner F., Falkner F. G.. ( 1998; ). The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. . Virology 244:, 365–396. [CrossRef] [PubMed]
    [Google Scholar]
  2. Carroll M. W., Moss B.. ( 1997; ). Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. . Virology 238:, 198–211. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cordeiro J. V., Guerra S., Arakawa Y., Dodding M. P., Esteban M., Way M.. ( 2009; ). F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. . PLoS ONE 4:, e8506. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dimier J., Ferrier-Rembert A., Pradeau-Aubreton K., Hebben M., Spehner D., Favier A.-L., Gratier D., Garin D., Crance J.-M., Drillien R.. ( 2011; ). Deletion of major nonessential genomic regions in the vaccinia virus Lister strain enhances attenuation without altering vaccine efficacy in mice. . J Virol 85:, 5016–5026. [CrossRef] [PubMed]
    [Google Scholar]
  5. Drexler I., Heller K., Wahren B., Erfle V., Sutter G.. ( 1998; ). Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. . J Gen Virol 79:, 347–352.[PubMed]
    [Google Scholar]
  6. Gómez C. E., Nájera J. L., Krupa M., Esteban M.. ( 2008; ). The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. . Curr Gene Ther 8:, 97–120. [CrossRef] [PubMed]
    [Google Scholar]
  7. Jordan I., Horn D., Oehmke S., Leendertz F. H., Sandig V.. ( 2009; ). Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara. . Virus Res 145:, 54–62. [CrossRef] [PubMed]
    [Google Scholar]
  8. Mayr A., Hochstein-Mintzel V., Stickl H.. ( 1975; ). Abstammung, Eigenschaften and Verwendung des attenuierten Vaccinia-Stammes MVA. . Infection 3:, 6–14. [CrossRef]
    [Google Scholar]
  9. Meisinger-Henschel C., Schmidt M., Lukassen S., Linke B., Krause L., Konietzny S., Goesmann A., Howley P., Chaplin P.. & other authors ( 2007; ). Genomic sequence of chorioallantois vaccinia virus Ankara, the ancestor of modified vaccinia virus Ankara. . J Gen Virol 88:, 3249–3259. [CrossRef] [PubMed]
    [Google Scholar]
  10. Meisinger-Henschel C., Späth M., Lukassen S., Wolferstätter M., Kachelriess H., Baur K., Dirmeier U., Wagner M., Chaplin P.. & other authors ( 2010; ). Introduction of the six major genomic deletions of modified vaccinia virus Ankara (MVA) into the parental vaccinia virus is not sufficient to reproduce an MVA-like phenotype in cell culture and in mice. . J Virol 84:, 9907–9919. [CrossRef] [PubMed]
    [Google Scholar]
  11. Melamed S., Wyatt L. S., Kastenmayer R. J., Moss B.. ( 2013; ). Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants. . Vaccine 31:, 4569–4577. [CrossRef] [PubMed]
    [Google Scholar]
  12. Meyer H., Sutter G., Mayr A.. ( 1991; ). Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. . J Gen Virol 72:, 1031–1038. [CrossRef] [PubMed]
    [Google Scholar]
  13. Morales I., Carbajal M. A., Bohn S., Holzer D., Kato S. E. M., Greco F. A. B., Moussatché N., Krijnse Locker J.. ( 2008; ). The vaccinia virus F11L gene product facilitates cell detachment and promotes migration. . Traffic 9:, 1283–1298. [CrossRef] [PubMed]
    [Google Scholar]
  14. Okeke M. I., Nilssen O., Traavik T.. ( 2006; ). Modified vaccinia virus Ankara multiplies in rat IEC-6 cells and limited production of mature virions occurs in other mammalian cell lines. . J Gen Virol 87:, 21–27. [CrossRef] [PubMed]
    [Google Scholar]
  15. Pires de Miranda M. P., Reading P. C., Tscharke D. C., Murphy B. J., Smith G. L.. ( 2003; ). The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. . J Gen Virol 84:, 2459–2471. [CrossRef] [PubMed]
    [Google Scholar]
  16. Schweneker M., Lukassen S., Späth M., Wolferstätter M., Babel E., Brinkmann K., Wielert U., Chaplin P., Suter M., Hausmann J.. ( 2012; ). The vaccinia virus O1 protein is required for sustained activation of extracellular signal-regulated kinase 1/2 and promotes viral virulence. . J Virol 86:, 2323–2336. [CrossRef] [PubMed]
    [Google Scholar]
  17. Shisler J. L., Isaacs S. N., Moss B.. ( 1999; ). Vaccinia virus serpin-1 deletion mutant exhibits a host range defect characterized by low levels of intermediate and late mRNAs. . Virology 262:, 298–311. [CrossRef] [PubMed]
    [Google Scholar]
  18. Staib C., Drexler I., Sutter G.. ( 2004; ). Construction and isolation of recombinant MVA. . In Vaccinia Virus and Poxvirology: Methods and Protocols (Methods in Molecular Biology), vol. 269, pp. 77–99. Edited by Isaacs S. N... Clifton, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  19. Valderrama F., Cordeiro J. V., Schleich S., Frischknecht F., Way M.. ( 2006; ). Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling. . Science 311:, 377–381. [CrossRef] [PubMed]
    [Google Scholar]
  20. Wong Y. C., Lin L. C. W., Melo-Silva C. R., Smith S. A., Tscharke D. C.. ( 2011; ). Engineering recombinant poxviruses using a compact GFP-blasticidin resistance fusion gene for selection. . J Virol Methods 171:, 295–298. [CrossRef] [PubMed]
    [Google Scholar]
  21. Wyatt L. S., Carroll M. W., Czerny C. P., Merchlinsky M., Sisler J. R., Moss B.. ( 1998; ). Marker rescue of the host range restriction defects of modified vaccinia virus Ankara. . Virology 251:, 334–342. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yang Z., Bruno D. P., Martens C. A., Porcella S. F., Moss B.. ( 2010; ). Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. . Proc Natl Acad Sci U S A 107:, 11513–11518. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058495-0
Loading
/content/journal/jgv/10.1099/vir.0.058495-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error