1887

Abstract

Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058313-0
2014-04-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/933.html?itemId=/content/journal/jgv/10.1099/vir.0.058313-0&mimeType=html&fmt=ahah

References

  1. Ahn K. , Angulo A. , Ghazal P. , Peterson P. A. , Yang Y. , Früh K. . ( 1996; ). Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. . Proc Natl Acad Sci U S A 93:, 10990–10995. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arkwright P. D. , Rieux-Laucat F. , Le Deist F. , Stevens R. F. , Angus B. , Cant A. J. . ( 2000; ). Cytomegalovirus infection in infants with autoimmune lymphoproliferative syndrome (ALPS). . Clin Exp Immunol 121:, 353–357. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arnoult D. , Bartle L. M. , Skaletskaya A. , Poncet D. , Zamzami N. , Park P. U. , Sharpe J. , Youle R. J. , Goldmacher V. S. . ( 2004; ). Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. . Proc Natl Acad Sci U S A 101:, 7988–7993. [CrossRef] [PubMed]
    [Google Scholar]
  4. Babić M. , Krmpotić A. , Jonjić S. . ( 2011; ). All is fair in virus-host interactions: NK cells and cytomegalovirus. . Trends Mol Med 17:, 677–685. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baillie J. , Sahlender D. A. , Sinclair J. H. . ( 2003; ). Human cytomegalovirus infection inhibits tumor necrosis factor α (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. . J Virol 77:, 7007–7016. [CrossRef] [PubMed]
    [Google Scholar]
  6. Barnhart B. C. , Alappat E. C. , Peter M. E. . ( 2003; ). The CD95 type I/type II model. . Semin Immunol 15:, 185–193. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chaudhuri A. R. , St Jeor S. , Maciejewski J. P. . ( 1999; ). Apoptosis induced by human cytomegalovirus infection can be enhanced by cytokines to limit the spread of virus. . Exp Hematol 27:, 1194–1203. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chiou S.-H. , Liu J.-H. , Hsu W.-M. , Chen S. S.-L. , Chang S.-Y. , Juan L.-J. , Lin J.-C. , Yang Y.-T. , Wong W.-W. . & other authors ( 2001; ). Up-regulation of Fas ligand expression by human cytomegalovirus immediate-early gene product 2: a novel mechanism in cytomegalovirus-induced apoptosis in human retina. . J Immunol 167:, 4098–4103.[PubMed] [CrossRef]
    [Google Scholar]
  9. Chiou S.-H. , Yang Y.-P. , Lin J.-C. , Hsu C.-H. , Jhang H.-C. , Yang Y.-T. , Lee C.-H. , Ho L. L. , Hsu W.-M. . & other authors ( 2006; ). The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. . J Immunol 177:, 6199–6206.[PubMed] [CrossRef]
    [Google Scholar]
  10. Cinatl J. Jr , Blaheta R. , Bittoova M. , Scholz M. , Margraf S. , Vogel J.-U. , Cinatl J. , Doerr H. W. . ( 2000; ). Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. . J Immunol 165:, 4405–4413.[PubMed] [CrossRef]
    [Google Scholar]
  11. Cosman D. , Müllberg J. , Sutherland C. L. , Chin W. , Armitage R. , Fanslow W. , Kubin M. , Chalupny N. J. . ( 2001; ). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. . Immunity 14:, 123–133. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dolan A. , Cunningham C. , Hector R. D. , Hassan-Walker A. F. , Lee L. , Addison C. , Dargan D. J. , McGeoch D. J. , Gatherer D. . & other authors ( 2004; ). Genetic content of wild-type human cytomegalovirus. . J Gen Virol 85:, 1301–1312. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dunn C. , Chalupny N. J. , Sutherland C. L. , Dosch S. , Sivakumar P. V. , Johnson D. C. , Cosman D. . ( 2003; ). Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. . J Exp Med 197:, 1427–1439. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ebermann L. , Ruzsics Z. , Guzmán C. A. , van Rooijen N. , Casalegno-Garduño R. , Koszinowski U. , Čičin-Šain L. . ( 2012; ). Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts. . PLoS Pathog 8:, e1003062. [CrossRef] [PubMed]
    [Google Scholar]
  15. Früh K. , Malouli D. , Oxford K. L. , Barry P. A. . ( 2013; ). Non-human-primate models of cytomegalovirus infection, prevention, and therapy. . In Cytomegaloviruses: from Molecular Pathogenesis to Intervention, pp. 463–496. Edited by Reddehase M. J. . . Wymondham, Norfolk:: Caister Academic Press;.
    [Google Scholar]
  16. Goldmacher V. S. , Bartle L. M. , Skaletskaya A. , Dionne C. A. , Kedersha N. L. , Vater C. A. , Han J. W. , Lutz R. J. , Watanabe S. . & other authors ( 1999; ). A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. . Proc Natl Acad Sci U S A 96:, 12536–12541. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hengel H. , Flohr T. , Hämmerling G. J. , Koszinowski U. H. , Momburg F. . ( 1996; ). Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. . J Gen Virol 77:, 2287–2296. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hesse J. , Ameres S. , Besold K. , Krauter S. , Moosmann A. , Plachter B. . ( 2013; ). Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. . J Gen Virol 94:, 376–386. [CrossRef] [PubMed]
    [Google Scholar]
  19. Itoh N. , Yonehara S. , Ishii A. , Yonehara M. , Mizushima S. , Sameshima M. , Hase A. , Seto Y. , Nagata S. . ( 1991; ). The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. . Cell 66:, 233–243. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jones T. R. , Wiertz E. J. , Sun L. , Fish K. N. , Nelson J. A. , Ploegh H. L. . ( 1996; ). Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. . Proc Natl Acad Sci U S A 93:, 11327–11333. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kischkel F. C. , Hellbardt S. , Behrmann I. , Germer M. , Pawlita M. , Krammer P. H. , Peter M. E. . ( 1995; ). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. . EMBO J 14:, 5579–5588.[PubMed]
    [Google Scholar]
  22. Le V. T. K. , Trilling M. , Hengel H. . ( 2011; ). The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-α signaling. . J Virol 85:, 13260–13270. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lehner P. J. , Cresswell P. . ( 1996; ). Processing and delivery of peptides presented by MHC class I molecules. . Curr Opin Immunol 8:, 59–67. [CrossRef] [PubMed]
    [Google Scholar]
  24. McSharry B. P. , Jones C. J. , Skinner J. W. , Kipling D. , Wilkinson G. W. . ( 2001; ). Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. . J Gen Virol 82:, 855–863.[PubMed]
    [Google Scholar]
  25. Montag C. , Wagner J. , Gruska I. , Hagemeier C. . ( 2006; ). Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1β-mediated NF-κB signaling. . J Virol 80:, 11686–11698. [CrossRef] [PubMed]
    [Google Scholar]
  26. Montag C. , Wagner J. A. , Gruska I. , Vetter B. , Wiebusch L. , Hagemeier C. . ( 2011; ). The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor α (TNF-α) signaling by upregulating TNF-α receptor 1 cell surface expression. . J Virol 85:, 11409–11421. [CrossRef] [PubMed]
    [Google Scholar]
  27. Murphy E. , Yu D. , Grimwood J. , Schmutz J. , Dickson M. , Jarvis M. A. , Hahn G. , Nelson J. A. , Myers R. M. , Shenk T. E. . ( 2003; ). Coding potential of laboratory and clinical strains of human cytomegalovirus. . Proc Natl Acad Sci U S A 100:, 14976–14981. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nagata S. . ( 1999; ). Fas ligand-induced apoptosis. . Annu Rev Genet 33:, 29–55. [CrossRef] [PubMed]
    [Google Scholar]
  29. Nagata S. , Golstein P. . ( 1995; ). The Fas death factor. . Science 267:, 1449–1456. [CrossRef] [PubMed]
    [Google Scholar]
  30. Nemčovičová I. , Benedict C. A. , Zajonc D. M. . ( 2013; ). Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions. . PLoS Pathog 9:, e1003224. [CrossRef] [PubMed]
    [Google Scholar]
  31. Park B. , Oh H. , Lee S. , Song Y. , Shin J. , Sung Y. C. , Hwang S.-Y. , Ahn K. . ( 2002; ). The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. . J Immunol 168:, 3464–3469.[PubMed] [CrossRef]
    [Google Scholar]
  32. Patrone M. , Percivalle E. , Secchi M. , Fiorina L. , Pedrali-Noy G. , Zoppé M. , Baldanti F. , Hahn G. , Koszinowski U. H. . & other authors ( 2003; ). The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. . J Gen Virol 84:, 3359–3370. [CrossRef] [PubMed]
    [Google Scholar]
  33. Poole E. , McGregor Dallas S. R. , Colston J. , Joseph R. S. V. , Sinclair J. . ( 2011; ). Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34? progenitors. . J Gen Virol 92:, 1539–1549. [CrossRef] [PubMed]
    [Google Scholar]
  34. Prod’homme V. , Sugrue D. M. , Stanton R. J. , Nomoto A. , Davies J. , Rickards C. R. , Cochrane D. , Moore M. , Wilkinson G. W. , Tomasec P. . ( 2010; ). Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. . J Gen Virol 91:, 2034–2039. [CrossRef] [PubMed]
    [Google Scholar]
  35. Raftery M. J. , Schwab M. , Eibert S. M. , Samstag Y. , Walczak H. , Schönrich G. . ( 2001; ). Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. . Immunity 15:, 997–1009. [CrossRef] [PubMed]
    [Google Scholar]
  36. Salvesen G. S. , Dixit V. M. . ( 1997; ). Caspases: intracellular signaling by proteolysis. . Cell 91:, 443–446. [CrossRef] [PubMed]
    [Google Scholar]
  37. Scott F. L. , Stec B. , Pop C. , Dobaczewska M. K. , Lee J. J. , Monosov E. , Robinson H. , Salvesen G. S. , Schwarzenbacher R. , Riedl S. J. . ( 2009; ). The Fas-FADD death domain complex structure unravels signalling by receptor clustering. . Nature 457:, 1019–1022. [CrossRef] [PubMed]
    [Google Scholar]
  38. Seirafian S. . ( 2013; ). An analysis of human cytomegalovirus gene usage. . PhD thesis;, Cardiff University:.
  39. Sinzger C. , Hahn G. , Digel M. , Katona R. , Sampaio K. L. , Messerle M. , Hengel H. , Koszinowski U. , Brune W. , Adler B. . ( 2008; ). Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. . J Gen Virol 89:, 359–368. [CrossRef] [PubMed]
    [Google Scholar]
  40. Skaletskaya A. , Bartle L. M. , Chittenden T. , McCormick A. L. , Mocarski E. S. , Goldmacher V. S. . ( 2001; ). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. . Proc Natl Acad Sci U S A 98:, 7829–7834. [CrossRef] [PubMed]
    [Google Scholar]
  41. Smith W. , Tomasec P. , Aicheler R. , Loewendorf A. , Nemčovičová I. , Wang E. C. , Stanton R. J. , Macauley M. , Norris P. . & other authors ( 2013; ). Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. . Cell Host Microbe 13:, 324–335. [CrossRef] [PubMed]
    [Google Scholar]
  42. Stern-Ginossar N. , Elefant N. , Zimmermann A. , Wolf D. G. , Saleh N. , Biton M. , Horwitz E. , Prokocimer Z. , Prichard M. . & other authors ( 2007; ). Host immune system gene targeting by a viral miRNA. . Science 317:, 376–381. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tomasec P. , Wang E. C. , Davison A. J. , Vojtesek B. , Armstrong M. , Griffin C. , McSharry B. P. , Morris R. J. , Llewellyn-Lacey S. . & other authors ( 2005; ). Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. . Nat Immunol 6:, 181–188. [CrossRef] [PubMed]
    [Google Scholar]
  44. Trauth B. C. , Klas C. , Peters A. M. , Matzku S. , Möller P. , Falk W. , Debatin K.-M. , Krammer P. H. . ( 1989; ). Monoclonal antibody-mediated tumor regression by induction of apoptosis. . Science 245:, 301–305. [CrossRef] [PubMed]
    [Google Scholar]
  45. Vidal S. , Krmpotić A. , Pyzik M. , Jonjić S. . ( 2013; ). Innate immunity to cytomegalovirus in the murine model. . In Cytomegaloviruses: from Molecular Pathogenesis to Intervention, pp. 192–214. Edited by Reddehase M. J. . . Wymondham, Norfolk:: Caister Academic Press;.
    [Google Scholar]
  46. Yonehara S. , Ishii A. , Yonehara M. . ( 1989; ). A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. . J Exp Med 169:, 1747–1756. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058313-0
Loading
/content/journal/jgv/10.1099/vir.0.058313-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error