1887

Abstract

Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058313-0
2014-04-01
2022-08-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/933.html?itemId=/content/journal/jgv/10.1099/vir.0.058313-0&mimeType=html&fmt=ahah

References

  1. Ahn K., Angulo A., Ghazal P., Peterson P. A., Yang Y., Früh K. 1996; Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci U S A 93:10990–10995 [View Article][PubMed]
    [Google Scholar]
  2. Arkwright P. D., Rieux-Laucat F., Le Deist F., Stevens R. F., Angus B., Cant A. J. 2000; Cytomegalovirus infection in infants with autoimmune lymphoproliferative syndrome (ALPS). Clin Exp Immunol 121:353–357 [View Article][PubMed]
    [Google Scholar]
  3. Arnoult D., Bartle L. M., Skaletskaya A., Poncet D., Zamzami N., Park P. U., Sharpe J., Youle R. J., Goldmacher V. S. 2004; Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 101:7988–7993 [View Article][PubMed]
    [Google Scholar]
  4. Babić M., Krmpotić A., Jonjić S. 2011; All is fair in virus-host interactions: NK cells and cytomegalovirus. Trends Mol Med 17:677–685 [View Article][PubMed]
    [Google Scholar]
  5. Baillie J., Sahlender D. A., Sinclair J. H. 2003; Human cytomegalovirus infection inhibits tumor necrosis factor α (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. J Virol 77:7007–7016 [View Article][PubMed]
    [Google Scholar]
  6. Barnhart B. C., Alappat E. C., Peter M. E. 2003; The CD95 type I/type II model. Semin Immunol 15:185–193 [View Article][PubMed]
    [Google Scholar]
  7. Chaudhuri A. R., St Jeor S., Maciejewski J. P. 1999; Apoptosis induced by human cytomegalovirus infection can be enhanced by cytokines to limit the spread of virus. Exp Hematol 27:1194–1203 [View Article][PubMed]
    [Google Scholar]
  8. Chiou S.-H., Liu J.-H., Hsu W.-M., Chen S. S.-L., Chang S.-Y., Juan L.-J., Lin J.-C., Yang Y.-T., Wong W.-W. other authors 2001; Up-regulation of Fas ligand expression by human cytomegalovirus immediate-early gene product 2: a novel mechanism in cytomegalovirus-induced apoptosis in human retina. J Immunol 167:4098–4103[PubMed] [CrossRef]
    [Google Scholar]
  9. Chiou S.-H., Yang Y.-P., Lin J.-C., Hsu C.-H., Jhang H.-C., Yang Y.-T., Lee C.-H., Ho L. L., Hsu W.-M. other authors 2006; The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. J Immunol 177:6199–6206[PubMed] [CrossRef]
    [Google Scholar]
  10. Cinatl J. Jr, Blaheta R., Bittoova M., Scholz M., Margraf S., Vogel J.-U., Cinatl J., Doerr H. W. 2000; Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol 165:4405–4413[PubMed] [CrossRef]
    [Google Scholar]
  11. Cosman D., Müllberg J., Sutherland C. L., Chin W., Armitage R., Fanslow W., Kubin M., Chalupny N. J. 2001; ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133 [View Article][PubMed]
    [Google Scholar]
  12. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D. other authors 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [View Article][PubMed]
    [Google Scholar]
  13. Dunn C., Chalupny N. J., Sutherland C. L., Dosch S., Sivakumar P. V., Johnson D. C., Cosman D. 2003; Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197:1427–1439 [View Article][PubMed]
    [Google Scholar]
  14. Ebermann L., Ruzsics Z., Guzmán C. A., van Rooijen N., Casalegno-Garduño R., Koszinowski U., Čičin-Šain L. 2012; Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts. PLoS Pathog 8:e1003062 [View Article][PubMed]
    [Google Scholar]
  15. Früh K., Malouli D., Oxford K. L., Barry P. A. 2013; Non-human-primate models of cytomegalovirus infection, prevention, and therapy. In Cytomegaloviruses: from Molecular Pathogenesis to Intervention pp. 463–496 Edited by Reddehase M. J. Wymondham, Norfolk: Caister Academic Press;
    [Google Scholar]
  16. Goldmacher V. S., Bartle L. M., Skaletskaya A., Dionne C. A., Kedersha N. L., Vater C. A., Han J. W., Lutz R. J., Watanabe S. other authors 1999; A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541 [View Article][PubMed]
    [Google Scholar]
  17. Hengel H., Flohr T., Hämmerling G. J., Koszinowski U. H., Momburg F. 1996; Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J Gen Virol 77:2287–2296 [View Article][PubMed]
    [Google Scholar]
  18. Hesse J., Ameres S., Besold K., Krauter S., Moosmann A., Plachter B. 2013; Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 94:376–386 [View Article][PubMed]
    [Google Scholar]
  19. Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. 1991; The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243 [View Article][PubMed]
    [Google Scholar]
  20. Jones T. R., Wiertz E. J., Sun L., Fish K. N., Nelson J. A., Ploegh H. L. 1996; Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A 93:11327–11333 [View Article][PubMed]
    [Google Scholar]
  21. Kischkel F. C., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P. H., Peter M. E. 1995; Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588[PubMed]
    [Google Scholar]
  22. Le V. T. K., Trilling M., Hengel H. 2011; The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-α signaling. J Virol 85:13260–13270 [View Article][PubMed]
    [Google Scholar]
  23. Lehner P. J., Cresswell P. 1996; Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol 8:59–67 [View Article][PubMed]
    [Google Scholar]
  24. McSharry B. P., Jones C. J., Skinner J. W., Kipling D., Wilkinson G. W. 2001; Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J Gen Virol 82:855–863[PubMed]
    [Google Scholar]
  25. Montag C., Wagner J., Gruska I., Hagemeier C. 2006; Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1β-mediated NF-κB signaling. J Virol 80:11686–11698 [View Article][PubMed]
    [Google Scholar]
  26. Montag C., Wagner J. A., Gruska I., Vetter B., Wiebusch L., Hagemeier C. 2011; The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor α (TNF-α) signaling by upregulating TNF-α receptor 1 cell surface expression. J Virol 85:11409–11421 [View Article][PubMed]
    [Google Scholar]
  27. Murphy E., Yu D., Grimwood J., Schmutz J., Dickson M., Jarvis M. A., Hahn G., Nelson J. A., Myers R. M., Shenk T. E. 2003; Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100:14976–14981 [View Article][PubMed]
    [Google Scholar]
  28. Nagata S. 1999; Fas ligand-induced apoptosis. Annu Rev Genet 33:29–55 [View Article][PubMed]
    [Google Scholar]
  29. Nagata S., Golstein P. 1995; The Fas death factor. Science 267:1449–1456 [View Article][PubMed]
    [Google Scholar]
  30. Nemčovičová I., Benedict C. A., Zajonc D. M. 2013; Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions. PLoS Pathog 9:e1003224 [View Article][PubMed]
    [Google Scholar]
  31. Park B., Oh H., Lee S., Song Y., Shin J., Sung Y. C., Hwang S.-Y., Ahn K. 2002; The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J Immunol 168:3464–3469[PubMed] [CrossRef]
    [Google Scholar]
  32. Patrone M., Percivalle E., Secchi M., Fiorina L., Pedrali-Noy G., Zoppé M., Baldanti F., Hahn G., Koszinowski U. H. other authors 2003; The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 84:3359–3370 [View Article][PubMed]
    [Google Scholar]
  33. Poole E., McGregor Dallas S. R., Colston J., Joseph R. S. V., Sinclair J. 2011; Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34? progenitors. J Gen Virol 92:1539–1549 [View Article][PubMed]
    [Google Scholar]
  34. Prod’homme V., Sugrue D. M., Stanton R. J., Nomoto A., Davies J., Rickards C. R., Cochrane D., Moore M., Wilkinson G. W., Tomasec P. 2010; Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J Gen Virol 91:2034–2039 [View Article][PubMed]
    [Google Scholar]
  35. Raftery M. J., Schwab M., Eibert S. M., Samstag Y., Walczak H., Schönrich G. 2001; Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15:997–1009 [View Article][PubMed]
    [Google Scholar]
  36. Salvesen G. S., Dixit V. M. 1997; Caspases: intracellular signaling by proteolysis. Cell 91:443–446 [View Article][PubMed]
    [Google Scholar]
  37. Scott F. L., Stec B., Pop C., Dobaczewska M. K., Lee J. J., Monosov E., Robinson H., Salvesen G. S., Schwarzenbacher R., Riedl S. J. 2009; The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:1019–1022 [View Article][PubMed]
    [Google Scholar]
  38. Seirafian S. 2013; An analysis of human cytomegalovirus gene usage. PhD thesis; Cardiff University:
    [Google Scholar]
  39. Sinzger C., Hahn G., Digel M., Katona R., Sampaio K. L., Messerle M., Hengel H., Koszinowski U., Brune W., Adler B. 2008; Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368 [View Article][PubMed]
    [Google Scholar]
  40. Skaletskaya A., Bartle L. M., Chittenden T., McCormick A. L., Mocarski E. S., Goldmacher V. S. 2001; A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98:7829–7834 [View Article][PubMed]
    [Google Scholar]
  41. Smith W., Tomasec P., Aicheler R., Loewendorf A., Nemčovičová I., Wang E. C., Stanton R. J., Macauley M., Norris P. other authors 2013; Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe 13:324–335 [View Article][PubMed]
    [Google Scholar]
  42. Stern-Ginossar N., Elefant N., Zimmermann A., Wolf D. G., Saleh N., Biton M., Horwitz E., Prokocimer Z., Prichard M. other authors 2007; Host immune system gene targeting by a viral miRNA. Science 317:376–381 [View Article][PubMed]
    [Google Scholar]
  43. Tomasec P., Wang E. C., Davison A. J., Vojtesek B., Armstrong M., Griffin C., McSharry B. P., Morris R. J., Llewellyn-Lacey S. other authors 2005; Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6:181–188 [View Article][PubMed]
    [Google Scholar]
  44. Trauth B. C., Klas C., Peters A. M., Matzku S., Möller P., Falk W., Debatin K.-M., Krammer P. H. 1989; Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305 [View Article][PubMed]
    [Google Scholar]
  45. Vidal S., Krmpotić A., Pyzik M., Jonjić S. 2013; Innate immunity to cytomegalovirus in the murine model. In Cytomegaloviruses: from Molecular Pathogenesis to Intervention pp. 192–214 Edited by Reddehase M. J. Wymondham, Norfolk:: Caister Academic Press;
    [Google Scholar]
  46. Yonehara S., Ishii A., Yonehara M. 1989; A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058313-0
Loading
/content/journal/jgv/10.1099/vir.0.058313-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error