1887

Abstract

Human cytomegalovirus (HCMV) is known to evade extrinsic pro-apoptotic pathways not only by downregulating cell surface expression of the death receptors TNFR1, TRAIL receptor 1 (TNFRSF10A) and TRAIL receptor 2 (TNFRSF10B), but also by impeding downstream signalling events. Fas (CD95/APO-1/TNFRSF6) also plays a prominent role in apoptotic clearance of virus-infected cells, so its fate in HCMV-infected cells needs to be addressed. Here, we show that cell surface expression of Fas was suppressed in HCMV-infected fibroblasts from 24 h onwards through the late phase of productive infection, and was dependent on virus-encoded gene expression but not virus DNA replication. Significant levels of the fully glycosylated (endoglycosidase-H-resistant) Fas were retained within HCMV-infected cells throughout the infection within intracellular membranous structures. HCMV infection provided cells with a high level of protection against Fas-mediated apoptosis. Downregulation of Fas was observed with HCMV strains AD169, FIX, Merlin and TB40.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058313-0
2014-04-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/933.html?itemId=/content/journal/jgv/10.1099/vir.0.058313-0&mimeType=html&fmt=ahah

References

  1. Ahn K., Angulo A., Ghazal P., Peterson P. A., Yang Y., Früh K. 1996; Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci U S A 93:10990–10995 [CrossRef][PubMed]
    [Google Scholar]
  2. Arkwright P. D., Rieux-Laucat F., Le Deist F., Stevens R. F., Angus B., Cant A. J. 2000; Cytomegalovirus infection in infants with autoimmune lymphoproliferative syndrome (ALPS). Clin Exp Immunol 121:353–357 [CrossRef][PubMed]
    [Google Scholar]
  3. Arnoult D., Bartle L. M., Skaletskaya A., Poncet D., Zamzami N., Park P. U., Sharpe J., Youle R. J., Goldmacher V. S. 2004; Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 101:7988–7993 [CrossRef][PubMed]
    [Google Scholar]
  4. Babić M., Krmpotić A., Jonjić S. 2011; All is fair in virus-host interactions: NK cells and cytomegalovirus. Trends Mol Med 17:677–685 [CrossRef][PubMed]
    [Google Scholar]
  5. Baillie J., Sahlender D. A., Sinclair J. H. 2003; Human cytomegalovirus infection inhibits tumor necrosis factor α (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. J Virol 77:7007–7016 [CrossRef][PubMed]
    [Google Scholar]
  6. Barnhart B. C., Alappat E. C., Peter M. E. 2003; The CD95 type I/type II model. Semin Immunol 15:185–193 [CrossRef][PubMed]
    [Google Scholar]
  7. Chaudhuri A. R., St Jeor S., Maciejewski J. P. 1999; Apoptosis induced by human cytomegalovirus infection can be enhanced by cytokines to limit the spread of virus. Exp Hematol 27:1194–1203 [CrossRef][PubMed]
    [Google Scholar]
  8. Chiou S.-H., Liu J.-H., Hsu W.-M., Chen S. S.-L., Chang S.-Y., Juan L.-J., Lin J.-C., Yang Y.-T., Wong W.-W. other authors 2001; Up-regulation of Fas ligand expression by human cytomegalovirus immediate-early gene product 2: a novel mechanism in cytomegalovirus-induced apoptosis in human retina. J Immunol 167:4098–4103[PubMed] [CrossRef]
    [Google Scholar]
  9. Chiou S.-H., Yang Y.-P., Lin J.-C., Hsu C.-H., Jhang H.-C., Yang Y.-T., Lee C.-H., Ho L. L., Hsu W.-M. other authors 2006; The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression. J Immunol 177:6199–6206[PubMed] [CrossRef]
    [Google Scholar]
  10. Cinatl J. Jr, Blaheta R., Bittoova M., Scholz M., Margraf S., Vogel J.-U., Cinatl J., Doerr H. W. 2000; Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol 165:4405–4413[PubMed] [CrossRef]
    [Google Scholar]
  11. Cosman D., Müllberg J., Sutherland C. L., Chin W., Armitage R., Fanslow W., Kubin M., Chalupny N. J. 2001; ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133 [CrossRef][PubMed]
    [Google Scholar]
  12. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D. other authors 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [CrossRef][PubMed]
    [Google Scholar]
  13. Dunn C., Chalupny N. J., Sutherland C. L., Dosch S., Sivakumar P. V., Johnson D. C., Cosman D. 2003; Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J Exp Med 197:1427–1439 [CrossRef][PubMed]
    [Google Scholar]
  14. Ebermann L., Ruzsics Z., Guzmán C. A., van Rooijen N., Casalegno-Garduño R., Koszinowski U., Čičin-Šain L. 2012; Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts. PLoS Pathog 8:e1003062 [CrossRef][PubMed]
    [Google Scholar]
  15. Früh K., Malouli D., Oxford K. L., Barry P. A. 2013; Non-human-primate models of cytomegalovirus infection, prevention, and therapy. In Cytomegaloviruses: from Molecular Pathogenesis to Intervention pp. 463–496 Edited by Reddehase M. J. Wymondham, Norfolk: Caister Academic Press;
    [Google Scholar]
  16. Goldmacher V. S., Bartle L. M., Skaletskaya A., Dionne C. A., Kedersha N. L., Vater C. A., Han J. W., Lutz R. J., Watanabe S. other authors 1999; A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541 [CrossRef][PubMed]
    [Google Scholar]
  17. Hengel H., Flohr T., Hämmerling G. J., Koszinowski U. H., Momburg F. 1996; Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J Gen Virol 77:2287–2296 [CrossRef][PubMed]
    [Google Scholar]
  18. Hesse J., Ameres S., Besold K., Krauter S., Moosmann A., Plachter B. 2013; Suppression of CD8+ T-cell recognition in the immediate-early phase of human cytomegalovirus infection. J Gen Virol 94:376–386 [CrossRef][PubMed]
    [Google Scholar]
  19. Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. 1991; The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243 [CrossRef][PubMed]
    [Google Scholar]
  20. Jones T. R., Wiertz E. J., Sun L., Fish K. N., Nelson J. A., Ploegh H. L. 1996; Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A 93:11327–11333 [CrossRef][PubMed]
    [Google Scholar]
  21. Kischkel F. C., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P. H., Peter M. E. 1995; Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588[PubMed]
    [Google Scholar]
  22. Le V. T. K., Trilling M., Hengel H. 2011; The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-α signaling. J Virol 85:13260–13270 [CrossRef][PubMed]
    [Google Scholar]
  23. Lehner P. J., Cresswell P. 1996; Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol 8:59–67 [CrossRef][PubMed]
    [Google Scholar]
  24. McSharry B. P., Jones C. J., Skinner J. W., Kipling D., Wilkinson G. W. 2001; Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J Gen Virol 82:855–863[PubMed]
    [Google Scholar]
  25. Montag C., Wagner J., Gruska I., Hagemeier C. 2006; Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1β-mediated NF-κB signaling. J Virol 80:11686–11698 [CrossRef][PubMed]
    [Google Scholar]
  26. Montag C., Wagner J. A., Gruska I., Vetter B., Wiebusch L., Hagemeier C. 2011; The latency-associated UL138 gene product of human cytomegalovirus sensitizes cells to tumor necrosis factor α (TNF-α) signaling by upregulating TNF-α receptor 1 cell surface expression. J Virol 85:11409–11421 [CrossRef][PubMed]
    [Google Scholar]
  27. Murphy E., Yu D., Grimwood J., Schmutz J., Dickson M., Jarvis M. A., Hahn G., Nelson J. A., Myers R. M., Shenk T. E. 2003; Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad Sci U S A 100:14976–14981 [CrossRef][PubMed]
    [Google Scholar]
  28. Nagata S. 1999; Fas ligand-induced apoptosis. Annu Rev Genet 33:29–55 [CrossRef][PubMed]
    [Google Scholar]
  29. Nagata S., Golstein P. 1995; The Fas death factor. Science 267:1449–1456 [CrossRef][PubMed]
    [Google Scholar]
  30. Nemčovičová I., Benedict C. A., Zajonc D. M. 2013; Structure of human cytomegalovirus UL141 binding to TRAIL-R2 reveals novel, non-canonical death receptor interactions. PLoS Pathog 9:e1003224 [CrossRef][PubMed]
    [Google Scholar]
  31. Park B., Oh H., Lee S., Song Y., Shin J., Sung Y. C., Hwang S.-Y., Ahn K. 2002; The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J Immunol 168:3464–3469[PubMed] [CrossRef]
    [Google Scholar]
  32. Patrone M., Percivalle E., Secchi M., Fiorina L., Pedrali-Noy G., Zoppé M., Baldanti F., Hahn G., Koszinowski U. H. other authors 2003; The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 84:3359–3370 [CrossRef][PubMed]
    [Google Scholar]
  33. Poole E., McGregor Dallas S. R., Colston J., Joseph R. S. V., Sinclair J. 2011; Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34? progenitors. J Gen Virol 92:1539–1549 [CrossRef][PubMed]
    [Google Scholar]
  34. Prod’homme V., Sugrue D. M., Stanton R. J., Nomoto A., Davies J., Rickards C. R., Cochrane D., Moore M., Wilkinson G. W., Tomasec P. 2010; Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112. J Gen Virol 91:2034–2039 [CrossRef][PubMed]
    [Google Scholar]
  35. Raftery M. J., Schwab M., Eibert S. M., Samstag Y., Walczak H., Schönrich G. 2001; Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15:997–1009 [CrossRef][PubMed]
    [Google Scholar]
  36. Salvesen G. S., Dixit V. M. 1997; Caspases: intracellular signaling by proteolysis. Cell 91:443–446 [CrossRef][PubMed]
    [Google Scholar]
  37. Scott F. L., Stec B., Pop C., Dobaczewska M. K., Lee J. J., Monosov E., Robinson H., Salvesen G. S., Schwarzenbacher R., Riedl S. J. 2009; The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:1019–1022 [CrossRef][PubMed]
    [Google Scholar]
  38. Seirafian S. 2013; An analysis of human cytomegalovirus gene usage. PhD thesis; Cardiff University:
  39. Sinzger C., Hahn G., Digel M., Katona R., Sampaio K. L., Messerle M., Hengel H., Koszinowski U., Brune W., Adler B. 2008; Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368 [CrossRef][PubMed]
    [Google Scholar]
  40. Skaletskaya A., Bartle L. M., Chittenden T., McCormick A. L., Mocarski E. S., Goldmacher V. S. 2001; A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98:7829–7834 [CrossRef][PubMed]
    [Google Scholar]
  41. Smith W., Tomasec P., Aicheler R., Loewendorf A., Nemčovičová I., Wang E. C., Stanton R. J., Macauley M., Norris P. other authors 2013; Human cytomegalovirus glycoprotein UL141 targets the TRAIL death receptors to thwart host innate antiviral defenses. Cell Host Microbe 13:324–335 [CrossRef][PubMed]
    [Google Scholar]
  42. Stern-Ginossar N., Elefant N., Zimmermann A., Wolf D. G., Saleh N., Biton M., Horwitz E., Prokocimer Z., Prichard M. other authors 2007; Host immune system gene targeting by a viral miRNA. Science 317:376–381 [CrossRef][PubMed]
    [Google Scholar]
  43. Tomasec P., Wang E. C., Davison A. J., Vojtesek B., Armstrong M., Griffin C., McSharry B. P., Morris R. J., Llewellyn-Lacey S. other authors 2005; Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat Immunol 6:181–188 [CrossRef][PubMed]
    [Google Scholar]
  44. Trauth B. C., Klas C., Peters A. M., Matzku S., Möller P., Falk W., Debatin K.-M., Krammer P. H. 1989; Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305 [CrossRef][PubMed]
    [Google Scholar]
  45. Vidal S., Krmpotić A., Pyzik M., Jonjić S. 2013; Innate immunity to cytomegalovirus in the murine model. In Cytomegaloviruses: from Molecular Pathogenesis to Intervention pp. 192–214 Edited by Reddehase M. J. Wymondham, Norfolk:: Caister Academic Press;
    [Google Scholar]
  46. Yonehara S., Ishii A., Yonehara M. 1989; A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058313-0
Loading
/content/journal/jgv/10.1099/vir.0.058313-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error