1887

Abstract

Elevated levels of antibodies against Epstein–Barr virus (EBV) and the presence of viral DNA in plasma are reliable biomarkers for the diagnosis of nasopharyngeal carcinoma (NPC) in high-prevalence areas, such as South-East Asia. The presence of these viral markers in the circulation suggests that a minimal level of virus reactivation may have occurred in an infected individual, although the underlying mechanism of reactivation remains to be elucidated. Here, we showed that treatment with nocodazole, which provokes the depolymerization of microtubules, induces the expression of two EBV lytic cycle proteins, Zta and EA-D, in EBV-positive NPC cells. This effect was independent of mitotic arrest, as viral reactivation was not abolished in cells synchronized at interphase. Notably, the induction of Zta by nocodazole was mediated by transcriptional upregulation via protein kinase C (PKC). Pre-treatment with inhibitors for PKC or its downstream signalling partners p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) abolished the nocodazole-mediated induction of Zta and EA-D. Interestingly, the effect of nocodazole, as well as colchicine and vinblastine, on lytic gene expression occurred only in NPC epithelial cells but not in cells derived from lymphocytes. These results establish a novel role of microtubule integrity in controlling the EBV life cycle through PKC and its downstream pathways, which represents a tissue-specific mechanism for controlling the life-cycle switch of EBV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.058040-0
2013-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2750.html?itemId=/content/journal/jgv/10.1099/vir.0.058040-0&mimeType=html&fmt=ahah

References

  1. Ai P., Wang T., Zhang H., Wang Y., Song C., Zhang L., Li Z., Hu H.. ( 2013;). Determination of antibodies directed at EBV proteins expressed in both latent and lytic cycles in nasopharyngeal carcinoma. . Oral Oncol 49:, 326–331. [CrossRef][PubMed]
    [Google Scholar]
  2. An X., Wang F. H., Ding P. R., Deng L., Jiang W. Q., Zhang L., Shao J. Y., Li Y. H.. ( 2011;). Plasma Epstein-Barr virus DNA level strongly predicts survival in metastatic/recurrent nasopharyngeal carcinoma treated with palliative chemotherapy. . Cancer 117:, 3750–3757. [CrossRef][PubMed]
    [Google Scholar]
  3. Bouvier G., Poirier S., Shao Y. M., Malaveille C., Ohshima H., Polack A., Bornkamm G. W., Zeng Y., de-Thé G., Bartsch H.. ( 1991;). Epstein–Barr virus activators, mutagens and volatile nitrosamines in preserved food samples from high-risk areas for nasopharyngeal carcinoma. . IARC Sci Publ 105:, 204–209.[PubMed]
    [Google Scholar]
  4. Cahir-McFarland E. D., Davidson D. M., Schauer S. L., Duong J., Kieff E.. ( 2000;). NF-κB inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. . Proc Natl Acad Sci U S A 97:, 6055–6060. [CrossRef][PubMed]
    [Google Scholar]
  5. Chan K. C., Lo Y. M.. ( 2002;). Circulating EBV DNA as a tumor marker for nasopharyngeal carcinoma. . Semin Cancer Biol 12:, 489–496. [CrossRef][PubMed]
    [Google Scholar]
  6. Chang Y., Tung C. H., Huang Y. T., Lu J., Chen J. Y., Tsai C. H.. ( 1999;). Requirement for cell-to-cell contact in Epstein–Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. . J Virol 73:, 8857–8866.[PubMed]
    [Google Scholar]
  7. Chang Y., Cheng S. D., Tsai C. H.. ( 2002;). Chromosomal integration of Epstein-Barr virus genomes in nasopharyngeal carcinoma cells. . Head Neck 24:, 143–150. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen C. L., Wen W. N., Chen J. Y., Hsu M. M., Hsu H. C.. ( 1993;). Detection of Epstein–Barr virus genome in nasopharyngeal carcinoma by in situ DNA hybridization. . Intervirology 36:, 91–98.[PubMed]
    [Google Scholar]
  9. Chen P. W., Lin S. J., Tsai S. C., Lin J. H., Chen M. R., Wang J. T., Lee C. P., Tsai C. H.. ( 2010;). Regulation of microtubule dynamics through phosphorylation on stathmin by Epstein–Barr virus kinase BGLF4. . J Biol Chem 285:, 10053–10063. [CrossRef][PubMed]
    [Google Scholar]
  10. Chien Y. C., Chen J. Y., Liu M. Y., Yang H. I., Hsu M. M., Chen C. J., Yang C. S.. ( 2001;). Serologic markers of Epstein–Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. . N Engl J Med 345:, 1877–1882. [CrossRef][PubMed]
    [Google Scholar]
  11. Cohen J. I.. ( 2000;). Epstein–Barr virus infection. . N Engl J Med 343:, 481–492. [CrossRef][PubMed]
    [Google Scholar]
  12. Das A., Bhattacharya A., Chakrabarti G.. ( 2009;). Cigarette smoke extract induces disruption of structure and function of tubulin-microtubule in lung epithelium cells and in vitro. . Chem Res Toxicol 22:, 446–459. [CrossRef][PubMed]
    [Google Scholar]
  13. Davies A. H., Grand R. J., Evans F. J., Rickinson A. B.. ( 1991;). Induction of Epstein–Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. . J Virol 65:, 6838–6844.[PubMed]
    [Google Scholar]
  14. Fang C. Y., Lee C. H., Wu C. C., Chang Y. T., Yu S. L., Chou S. P., Huang P. T., Chen C. L., Hou J. W.. & other authors ( 2009;). Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. . Int J Cancer 124:, 2016–2025. [CrossRef][PubMed]
    [Google Scholar]
  15. Feng W. H., Israel B., Raab-Traub N., Busson P., Kenney S. C.. ( 2002;). Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. . Cancer Res 62:, 1920–1926.[PubMed]
    [Google Scholar]
  16. Gao X., Ikuta K., Tajima M., Sairenji T.. ( 2001;). 12-O-Tetradecanoylphorbol-13-acetate induces Epstein–Barr virus reactivation via NF-κB and AP-1 as regulated by protein kinase C and mitogen-activated protein kinase. . Virology 286:, 91–99. [CrossRef][PubMed]
    [Google Scholar]
  17. Goswami R., Gershburg S., Satorius A., Gershburg E.. ( 2012;). Protein kinase inhibitors that inhibit induction of lytic program and replication of Epstein–Barr virus. . Antiviral Res 96:, 296–304. [CrossRef][PubMed]
    [Google Scholar]
  18. Gourzones C., Barjon C., Busson P.. ( 2012;). Host–tumor interactions in nasopharyngeal carcinomas. . Semin Cancer Biol 22:, 127–136. [CrossRef][PubMed]
    [Google Scholar]
  19. Gradoville L., Kwa D., El-Guindy A., Miller G.. ( 2002;). Protein kinase C-independent activation of the Epstein–Barr virus lytic cycle. . J Virol 76:, 5612–5626. [CrossRef][PubMed]
    [Google Scholar]
  20. Han B. L., Xu X. Y., Zhang C. Z., Wu J. J., Han C. F., Wang H., Wang X., Wang G. S., Yang S. J., Xie Y.. ( 2012;). Systematic review on Epstein–Barr virus (EBV) DNA in diagnosis of nasopharyngeal carcinoma in Asian populations. . Asian Pac J Cancer Prev 13:, 2577–2581. [CrossRef][PubMed]
    [Google Scholar]
  21. Hildesheim A., Wang C. P.. ( 2012;). Genetic predisposition factors and nasopharyngeal carcinoma risk: a review of epidemiological association studies, 2000–2011: Rosetta Stone for NPC: genetics, viral infection, and other environmental factors. . Semin Cancer Biol 22:, 107–116. [CrossRef][PubMed]
    [Google Scholar]
  22. Hu C., Wei W., Chen X., Woodman C. B., Yao Y., Nicholls J. M., Joab I., Sihota S. K., Shao J. Y.. & other authors ( 2012;). A global view of the oncogenic landscape in nasopharyngeal carcinoma: an integrated analysis at the genetic and expression levels. . PLoS ONE 7:, e41055. [CrossRef][PubMed]
    [Google Scholar]
  23. Huang S. Y., Fang C. Y., Tsai C. H., Chang Y., Takada K., Hsu T. Y., Chen J. Y.. ( 2010;). N-methyl-N′-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein–Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells. . Chem Biol Interact 188:, 623–634. [CrossRef][PubMed]
    [Google Scholar]
  24. Hui K. F., Ho D. N., Tsang C. M., Middeldorp J. M., Tsao G. S., Chiang A. K.. ( 2012;). Activation of lytic cycle of Epstein–Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma. . Int J Cancer 131:, 1930–1940. [CrossRef][PubMed]
    [Google Scholar]
  25. Jaiswal A. S., Multani A. S., Pathak S., Narayan S.. ( 2004;). N-methyl-N′-nitro-N-nitrosoguanidine-induced senescence-like growth arrest in colon cancer cells is associated with loss of adenomatous polyposis coli protein, microtubule organization, and telomeric DNA. . Mol Cancer 3:, 3. [CrossRef][PubMed]
    [Google Scholar]
  26. Jia W. H., Qin H. D.. ( 2012;). Non-viral environmental risk factors for nasopharyngeal carcinoma: a systematic review. . Semin Cancer Biol 22:, 117–126. [CrossRef][PubMed]
    [Google Scholar]
  27. Jordan M. A., Wilson L.. ( 2004;). Microtubules as a target for anticancer drugs. . Nat Rev Cancer 4:, 253–265. [CrossRef][PubMed]
    [Google Scholar]
  28. Kadi A., Berthet V., Pichard V., Abadie B., Rognoni J. B., Marvaldi J., Luis J.. ( 2002;). [Involvement of FAK, PI3-K and PKC in cell adhesion induced by microtubule disruption]. . Bull Cancer 89:, 227–233 (in French).[PubMed]
    [Google Scholar]
  29. Keller S. A., Schattner E. J., Cesarman E.. ( 2000;). Inhibition of NF-κB induces apoptosis of KSHV-infected primary effusion lymphoma cells. . Blood 96:, 2537–2542.[PubMed]
    [Google Scholar]
  30. Li Y., Zhang Y., Fu M., Yao Q., Zhuo H., Lu Q., Niu X., Zhang P., Pei Y., Zhang K.. ( 2012;). Parthenolide induces apoptosis and lytic cytotoxicity in Epstein–Barr virus-positive Burkitt lymphoma. . Mol Med Rep 6:, 477–482.[PubMed]
    [Google Scholar]
  31. Lin C. T., Wong C. I., Chan W. Y., Tzung K. W., Ho J. K., Hsu M. M., Chuang S. M.. ( 1990;). Establishment and characterization of two nasopharyngeal carcinoma cell lines. . Lab Invest 62:, 713–724.[PubMed]
    [Google Scholar]
  32. Lin C. T., Chan W. Y., Chen W., Huang H. M., Wu H. C., Hsu M. M., Chuang S. M., Wang C. C.. ( 1993;). Characterization of seven newly established nasopharyngeal carcinoma cell lines. . Lab Invest 68:, 716–727.[PubMed]
    [Google Scholar]
  33. Lin X., Liu S., Luo X., Ma X., Guo L., Li L., Li Z., Tao Y., Cao Y.. ( 2009;). EBV-encoded LMP1 regulates Op18/stathmin signaling pathway by cdc2 mediation in nasopharyngeal carcinoma cells. . Int J Cancer 124:, 1020–1027. [CrossRef][PubMed]
    [Google Scholar]
  34. Oussaief L., Ramírez V., Hippocrate A., Arbach H., Cochet C., Proust A., Raphaël M., Khelifa R., Joab I.. ( 2011;). NF-κB-mediated modulation of inducible nitric oxide synthase activity controls induction of the Epstein–Barr virus productive cycle by transforming growth factor beta 1. . J Virol 85:, 6502–6512. [CrossRef][PubMed]
    [Google Scholar]
  35. Pow E. H., Law M. Y., Tsang P. C., Perera R. A., Kwong D. L.. ( 2011;). Salivary Epstein–Barr virus DNA level in patients with nasopharyngeal carcinoma following radiotherapy. . Oral Oncol 47:, 879–882. [CrossRef][PubMed]
    [Google Scholar]
  36. Sakamoto Y., Mariya Y., Kubo K.. ( 2012;). Quantification of Epstein–Barr virus DNA is helpful for evaluation of chronic active Epstein–Barr virus infection. . Tohoku J Exp Med 227:, 307–311. [CrossRef][PubMed]
    [Google Scholar]
  37. Shao J. Y., Li Y. H., Gao H. Y., Wu Q. L., Cui N. J., Zhang L., Cheng G., Hu L. F., Ernberg I., Zeng Y. X.. ( 2004a;). Comparison of plasma Epstein–Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. . Cancer 100:, 1162–1170. [CrossRef][PubMed]
    [Google Scholar]
  38. Shao J. Y., Zhang Y., Li Y. H., Gao H. Y., Feng H. X., Wu Q. L., Cui N. J., Cheng G., Hu B.. & other authors ( 2004b;). Comparison of Epstein–Barr virus DNA level in plasma, peripheral blood cell and tumor tissue in nasopharyngeal carcinoma. . Anticancer Res 24:, 4059–4066.[PubMed]
    [Google Scholar]
  39. Sprangers B., Smets S., Sagaert X., Wozniak A., Wollants E., Van Ranst M., Debiec-Rychter M., Sciot R., Vanrenterghem Y., Kuypers D. R.. ( 2008;). Posttransplant Epstein–Barr virus-associated myogenic tumors: case report and review of the literature. . Am J Transplant 8:, 253–258. [CrossRef][PubMed]
    [Google Scholar]
  40. Tedeschi R., Pin E., Martorelli D., Bidoli E., Marus A., Pratesi C., Bortolin M. T., Zanussi S., Vaccher E.. & other authors ( 2007;). Serum antibody response to lytic and latent Epstein–Barr virus antigens in undifferentiated nasopharyngeal carcinoma patients from an area of nonendemicity. . Clin Vaccine Immunol 14:, 435–441. [CrossRef][PubMed]
    [Google Scholar]
  41. Tierney R. J., Steven N., Young L. S., Rickinson A. B.. ( 1994;). Epstein–Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state. . J Virol 68:, 7374–7385.[PubMed]
    [Google Scholar]
  42. Tsai C. H., Williams M. V., Glaser R.. ( 1991;). Characterization of two monoclonal antibodies to Epstein–Barr virus diffuse early antigen which react to two different epitopes and have different biological function. . J Virol Methods 33:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  43. Tsai C. H., Liu M. T., Chen M. R., Lu J., Yang H. L., Chen J. Y., Yang C. S.. ( 1997;). Characterization of monoclonal antibodies to the Zta and DNase proteins of Epstein–Barr virus. . J Biomed Sci 4:, 69–77. [CrossRef][PubMed]
    [Google Scholar]
  44. Tsai P. F., Lin S. J., Weng P. L., Tsai S. C., Lin J. H., Chou Y. C., Tsai C. H.. ( 2011;). Interplay between PKCδ and Sp1 on histone deacetylase inhibitor-mediated Epstein–Barr virus reactivation. . J Virol 85:, 2373–2385. [CrossRef][PubMed]
    [Google Scholar]
  45. Tsai K. L., Chiu T. H., Tsai M. H., Chen H. Y., Ou H. C.. ( 2012;). Vinorelbine-induced oxidative injury in human endothelial cells mediated by AMPK/PKC/NADPH/NF-κB pathways. . Cell Biochem Biophys 62:, 467–479. [CrossRef][PubMed]
    [Google Scholar]
  46. Tsao S. W., Tsang C. M., Pang P. S., Zhang G., Chen H., Lo K. W.. ( 2012;). The biology of EBV infection in human epithelial cells. . Semin Cancer Biol 22:, 137–143. [CrossRef][PubMed]
    [Google Scholar]
  47. Tsurumi T., Fujita M., Kudoh A.. ( 2005;). Latent and lytic Epstein-Barr virus replication strategies. . Rev Med Virol 15:, 3–15. [CrossRef][PubMed]
    [Google Scholar]
  48. Valencia S. M., Hutt-Fletcher L. M.. ( 2012;). Important but differential roles for actin in trafficking of Epstein–Barr virus in B cells and epithelial cells. . J Virol 86:, 2–10. [CrossRef][PubMed]
    [Google Scholar]
  49. Wang W. Y., Twu C. W., Chen H. H., Jiang R. S., Wu C. T., Liang K. L., Shih Y. T., Chen C. C., Lin P. J.. & other authors ( 2013;). Long-term survival analysis of nasopharyngeal carcinoma by plasma Epstein–Barr virus DNA levels. . Cancer 119:, 963–970. [CrossRef][PubMed]
    [Google Scholar]
  50. Wildeman M. A., Novalic Z., Verkuijlen S. A., Juwana H., Huitema A. D., Tan I. B., Middeldorp J. M., de Boer J. P., Greijer A. E.. ( 2012;). Cytolytic virus activation therapy for Epstein–Barr virus-driven tumors. . Clin Cancer Res 18:, 5061–5070. [CrossRef][PubMed]
    [Google Scholar]
  51. Xu F. H., Xiong D., Xu Y. F., Cao S. M., Xue W. Q., Qin H. D., Liu W. S., Cao J. Y., Zhang Y.. & other authors ( 2012;). An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein–Barr virus activation. . J Natl Cancer Inst 104:, 1396–1410. [CrossRef][PubMed]
    [Google Scholar]
  52. Young L. S., Rickinson A. B.. ( 2004;). Epstein–Barr virus: 40 years on. . Nat Rev Cancer 4:, 757–768. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.058040-0
Loading
/content/journal/jgv/10.1099/vir.0.058040-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error