1887

Abstract

A genetic variant of the H5N1 influenza virus, termed subclade 2.3.2.1, was first identified in Bulgaria in 2010 and has subsequently been found in Vietnam and Laos. Several cases of human infections with this virus have been identified. Thus, it is important to understand the antigenic properties and transmissibility of this variant. Our results showed that, although it is phylogenetically closely related to other previously characterized clade 2.3 viruses, this novel 2.3.2.1 variant exhibited distinct antigenic properties and showed little cross-reactivity to sera raised against other H5N1 viruses. Like other H5N1 viruses, this variant bound preferentially to avian-type receptors, but contained substitutions at positions 190 and 158 of the haemagglutinin (HA) protein that have been postulated to facilitate HA binding to human-type receptors and to enhance viral transmissibility among mammals, respectively. However, this virus did not appear to have acquired the capacity for airborne transmission between ferrets. These findings highlight the challenges in selecting vaccine candidates for H5N1 influenza because these viruses continue to evolve rapidly in the field. It is important to note that some variants have obtained mutations that may gain transmissibility between model animals, and close surveillance of H5N1 viruses in poultry is warranted.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057778-0
2013-12-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2616.html?itemId=/content/journal/jgv/10.1099/vir.0.057778-0&mimeType=html&fmt=ahah

References

  1. Abdel-Ghafar A. N., Chotpitayasunondh T., Gao Z., Hayden F. G., Nguyen D. H., de Jong M. D., Naghdaliyev A., Peiris J. S., Shindo N.. & other authors ( 2008;). Update on avian influenza A (H5N1) virus infection in humans. . N Engl J Med 358:, 261–273. [CrossRef][PubMed]
    [Google Scholar]
  2. Auewarakul P., Suptawiwat O., Kongchanagul A., Sangma C., Suzuki Y., Ungchusak K., Louisirirotchanakul S., Lerdsamran H., Pooruk P.. & other authors ( 2007;). An avian influenza H5N1 virus that binds to a human-type receptor. . J Virol 81:, 9950–9955. [CrossRef][PubMed]
    [Google Scholar]
  3. Beigel J. H., Farrar J., Han A. M., Hayden F. G., Hyer R., de Jong M. D., Lochindarat S., Nguyen T. K., Nguyen T. H.. & other authors ( 2005;). Avian influenza A (H5N1) infection in humans. . N Engl J Med 353:, 1374–1385. [CrossRef][PubMed]
    [Google Scholar]
  4. Belser J. A., Lu X., Maines T. R., Smith C., Li Y., Donis R. O., Katz J. M., Tumpey T. M.. ( 2007;). Pathogenesis of avian influenza (H7) virus infection in mice and ferrets: enhanced virulence of Eurasian H7N7 viruses isolated from humans. . J Virol 81:, 11139–11147. [CrossRef][PubMed]
    [Google Scholar]
  5. Boni M. F.. ( 2008;). Vaccination and antigenic drift in influenza. . Vaccine 26: (Suppl. 3), C8–C14. [CrossRef][PubMed]
    [Google Scholar]
  6. Bridges C. B., Kuehnert M. J., Hall C. B.. ( 2003;). Transmission of influenza: implications for control in health care settings. . Clin Infect Dis 37:, 1094–1101. [CrossRef][PubMed]
    [Google Scholar]
  7. Bush R. M., Bender C. A., Subbarao K., Cox N. J., Fitch W. M.. ( 1999;). Predicting the evolution of human influenza A. . Science 286:, 1921–1925. [CrossRef][PubMed]
    [Google Scholar]
  8. Callan R. J., Hartmann F. A., West S. E., Hinshaw V. S.. ( 1997;). Cleavage of influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases. . J Virol 71:, 7579–7585.[PubMed]
    [Google Scholar]
  9. Chen H., Smith G. J., Li K. S., Wang J., Fan X. H., Rayner J. M., Vijaykrishna D., Zhang J. X., Zhang L. J.. & other authors ( 2006;). Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. . Proc Natl Acad Sci U S A 103:, 2845–2850. [CrossRef][PubMed]
    [Google Scholar]
  10. Choi J. G., Kang H. M., Jeon W. J., Choi K. S., Kim K. I., Song B. M., Lee H. S., Kim J. H., Lee Y. J.. ( 2013;). Characterization of clade 2.3.2.1 H5N1 highly pathogenic avian influenza viruses isolated from wild birds (mandarin duck and Eurasian eagle owl) in 2010 in Korea. . Viruses 5:, 1153–1174. [CrossRef][PubMed]
    [Google Scholar]
  11. Creanga A., Thi Nguyen D., Gerloff N., Thi Do H., Balish A., Dang Nguyen H., Jang Y., Thi Dam V., Thor S.. & other authors ( 2013;). Emergence of multiple clade 2.3.2.1 influenza A (H5N1) virus subgroups in Vietnam and detection of novel reassortants. . Virology 444:, 12–20. [CrossRef][PubMed]
    [Google Scholar]
  12. Gambaryan A., Tuzikov A., Pazynina G., Bovin N., Balish A., Klimov A.. ( 2006;). Evolution of the receptor binding phenotype of influenza A (H5) viruses. . Virology 344:, 432–438. [CrossRef][PubMed]
    [Google Scholar]
  13. Gamblin S. J., Haire L. F., Russell R. J., Stevens D. J., Xiao B., Ha Y., Vasisht N., Steinhauer D. A., Daniels R. S.. & other authors ( 2004;). The structure and receptor binding properties of the 1918 influenza hemagglutinin. . Science 303:, 1838–1842. [CrossRef][PubMed]
    [Google Scholar]
  14. Glaser L., Stevens J., Zamarin D., Wilson I. A., García-Sastre A., Tumpey T. M., Basler C. F., Taubenberger J. K., Palese P.. ( 2005;). A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. . J Virol 79:, 11533–11536. [CrossRef][PubMed]
    [Google Scholar]
  15. Guan Y., Peiris J. S., Lipatov A. S., Ellis T. M., Dyrting K. C., Krauss S., Zhang L. J., Webster R. G., Shortridge K. F.. ( 2002;). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. . Proc Natl Acad Sci U S A 99:, 8950–8955. [CrossRef][PubMed]
    [Google Scholar]
  16. Harvey R., Martin A. C., Zambon M., Barclay W. S.. ( 2004;). Restrictions to the adaptation of influenza a virus H5 hemagglutinin to the human host. . J Virol 78:, 502–507. [CrossRef][PubMed]
    [Google Scholar]
  17. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., Sorrell E. M., Bestebroer T. M., Burke D. F.. & other authors ( 2012;). Airborne transmission of influenza A/H5N1 virus between ferrets. . Science 336:, 1534–1541. [CrossRef][PubMed]
    [Google Scholar]
  18. Hien T. T., Liem N. T., Dung N. T., San L. T., Mai P. P., Chau N. V., Suu P. T., Dong V. C., Mai L. T. Q.. & other authors ( 2004;). Avian influenza A (H5N1) in 10 patients in Vietnam. . N Engl J Med 350:, 1179–1188. [CrossRef][PubMed]
    [Google Scholar]
  19. Hu J., Zhao K., Liu X., Wang X., Chen Z., Liu X.. ( 2013;). Two highly pathogenic avian influenza H5N1 viruses of clade 2.3.2.1 with similar genetic background but with different pathogenicity in mice and ducks. . Transbound Emerg Dis 60:, 127–139. [CrossRef][PubMed]
    [Google Scholar]
  20. Hulse-Post D. J., Franks J., Boyd K., Salomon R., Hoffmann E., Yen H. L., Webby R. J., Walker D., Nguyen T. D., Webster R. G.. ( 2007;). Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks. . J Virol 81:, 8515–8524. [CrossRef][PubMed]
    [Google Scholar]
  21. Imai M., Kawaoka Y.. ( 2012;). The role of receptor binding specificity in interspecies transmission of influenza viruses. . Curr Opin Virol 2:, 160–167. [CrossRef][PubMed]
    [Google Scholar]
  22. Imai M., Watanabe T., Hatta M., Das S. C., Ozawa M., Shinya K., Zhong G., Hanson A., Katsura H.. & other authors ( 2012;). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. . Nature 486:, 420–428.[PubMed]
    [Google Scholar]
  23. Jackson S., Van Hoeven N., Chen L. M., Maines T. R., Cox N. J., Katz J. M., Donis R. O.. ( 2009;). Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. . J Virol 83:, 8131–8140. [CrossRef][PubMed]
    [Google Scholar]
  24. Jain S., Kamimoto L., Bramley A. M., Schmitz A. M., Benoit S. R., Louie J., Sugerman D. E., Druckenmiller J. K., Ritger K. A.. & other authors ( 2009;). Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. . N Engl J Med 361:, 1935–1944. [CrossRef][PubMed]
    [Google Scholar]
  25. Maher J. A., DeStefano J.. ( 2004;). The ferret: an animal model to study influenza virus. . Lab Anim (NY) 33:, 50–53. [CrossRef][PubMed]
    [Google Scholar]
  26. Maines T. R., Chen L. M., Matsuoka Y., Chen H., Rowe T., Ortin J., Falcón A., Hien N. T., Mai Q.. & other authors ( 2006;). Lack of transmission of H5N1 avian–human reassortant influenza viruses in a ferret model. . Proc Natl Acad Sci U S A 103:, 12121–12126. [CrossRef][PubMed]
    [Google Scholar]
  27. Maines T. R., Jayaraman A., Belser J. A., Wadford D. A., Pappas C., Zeng H., Gustin K. M., Pearce M. B., Viswanathan K.. & other authors ( 2009;). Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. . Science 325:, 484–487.[PubMed]
    [Google Scholar]
  28. Marinova-Petkova A., Georgiev G., Seiler P., Darnell D., Franks J., Krauss S., Webby R. J., Webster R. G.. ( 2012;). Spread of influenza virus A (H5N1) clade 2.3.2.1 to Bulgaria in common buzzards. . Emerg Infect Dis 18:, 1596–1602. [CrossRef][PubMed]
    [Google Scholar]
  29. Marjuki H., Scholtissek C., Franks J., Negovetich N. J., Aldridge J. R., Salomon R., Finkelstein D., Webster R. G.. ( 2010;). Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks. . Arch Virol 155:, 925–934. [CrossRef][PubMed]
    [Google Scholar]
  30. Matrosovich M., Zhou N., Kawaoka Y., Webster R.. ( 1999;). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. . J Virol 73:, 1146–1155.[PubMed]
    [Google Scholar]
  31. Michaelis M., Doerr H. W., Cinatl J. Jr. ( 2009;). Of chickens and men: avian influenza in humans. . Curr Mol Med 9:, 131–151. [CrossRef][PubMed]
    [Google Scholar]
  32. Miller E., Hoschler K., Hardelid P., Stanford E., Andrews N., Zambon M.. ( 2010;). Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study. . Lancet 375:, 1100–1108. [CrossRef][PubMed]
    [Google Scholar]
  33. Munster V. J., de Wit E., van den Brand J. M., Herfst S., Schrauwen E. J., Bestebroer T. M., van de Vijver D., Boucher C. A., Koopmans M.. & other authors ( 2009;). Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. . Science 325:, 481–483.[PubMed]
    [Google Scholar]
  34. Reed L. J., Muench H.. ( 1938;). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  35. Salzberg S. L., Kingsford C., Cattoli G., Spiro D. J., Janies D. A., Aly M. M., Brown I. H., Couacy-Hymann E., De Mia G. M.. & other authors ( 2007;). Genome analysis linking recent European and African influenza (H5N1) viruses. . Emerg Infect Dis 13:, 713–718. [CrossRef][PubMed]
    [Google Scholar]
  36. Shinya K., Ebina M., Yamada S., Ono M., Kasai N., Kawaoka Y.. ( 2006;). Avian flu: influenza virus receptors in the human airway. . Nature 440:, 435–436. [CrossRef][PubMed]
    [Google Scholar]
  37. Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A.. ( 2004;). Mapping the antigenic and genetic evolution of influenza virus. . Science 305:, 371–376. [CrossRef][PubMed]
    [Google Scholar]
  38. Smith G. J., Fan X. H., Wang J., Li K. S., Qin K., Zhang J. X., Vijaykrishna D., Cheung C. L., Huang K.. & other authors ( 2006;). Emergence and predominance of an H5N1 influenza variant in China. . Proc Natl Acad Sci U S A 103:, 16936–16941. [CrossRef][PubMed]
    [Google Scholar]
  39. Sorrell E. M., Wan H., Araya Y., Song H., Perez D. R.. ( 2009;). Minimal molecular constraints for respiratory droplet transmission of an avian–human H9N2 influenza A virus. . Proc Natl Acad Sci U S A 106:, 7565–7570. [CrossRef][PubMed]
    [Google Scholar]
  40. Stevens J., Blixt O., Tumpey T. M., Taubenberger J. K., Paulson J. C., Wilson I. A.. ( 2006;). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. . Science 312:, 404–410. [CrossRef][PubMed]
    [Google Scholar]
  41. Stevens J., Blixt O., Chen L. M., Donis R. O., Paulson J. C., Wilson I. A.. ( 2008;). Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. . J Mol Biol 381:, 1382–1394. [CrossRef][PubMed]
    [Google Scholar]
  42. Treanor J.. ( 2004;). Influenza vaccine – outmaneuvering antigenic shift and drift. . N Engl J Med 350:, 218–220. [CrossRef][PubMed]
    [Google Scholar]
  43. Tung D. H., Van Quyen D., Nguyen T., Xuan H. T., Nam T. N., Duy K. D.. ( 2013;). Molecular characterization of a H5N1 highly pathogenic avian influenza virus clade 2.3.2.1b circulating in Vietnam in 2011. . Vet Microbiol 165:, 341–348. [CrossRef][PubMed]
    [Google Scholar]
  44. Ungchusak K., Auewarakul P., Dowell S. F., Kitphati R., Auwanit W., Puthavathana P., Uiprasertkul M., Boonnak K., Pittayawonganon C.. & other authors ( 2005;). Probable person-to-person transmission of avian influenza A (H5N1). . N Engl J Med 352:, 333–340. [CrossRef][PubMed]
    [Google Scholar]
  45. van Riel D., Munster V. J., de Wit E., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D., Kuiken T.. ( 2006;). H5N1 virus attachment to lower respiratory tract. . Science 312:, 399. [CrossRef][PubMed]
    [Google Scholar]
  46. van Riel D., Munster V. J., de Wit E., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D., Kuiken T.. ( 2007;). Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. . Am J Pathol 171:, 1215–1223. [CrossRef][PubMed]
    [Google Scholar]
  47. Vines A., Wells K., Matrosovich M., Castrucci M. R., Ito T., Kawaoka Y.. ( 1998;). The role of influenza A virus hemagglutinin residues 226 and 228 in receptor specificity and host range restriction. . J Virol 72:, 7626–7631.[PubMed]
    [Google Scholar]
  48. Wang H., Feng Z., Shu Y., Yu H., Zhou L., Zu R., Huai Y., Dong J., Bao C.. & other authors ( 2008;). Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. . Lancet 371:, 1427–1434. [CrossRef][PubMed]
    [Google Scholar]
  49. Wang W., Lu B., Zhou H., Suguitan A. L. Jr, Cheng X., Subbarao K., Kemble G., Jin H.. ( 2010;). Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. . J Virol 84:, 6570–6577. [CrossRef][PubMed]
    [Google Scholar]
  50. Watanabe Y., Ibrahim M. S., Ellakany H. F., Kawashita N., Mizuike R., Hiramatsu H., Sriwilaijaroen N., Takagi T., Suzuki Y., Ikuta K.. ( 2011;). Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. . PLoS Pathog 7:, e1002068. [CrossRef][PubMed]
    [Google Scholar]
  51. WHO ( 2012;). Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. . Wkly Epidemiol Rec 87:, 97–108.[PubMed]
    [Google Scholar]
  52. WHO ( 2013;). Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness. . Wkly Epidemiol Rec 88:, 117–125.[PubMed]
    [Google Scholar]
  53. WHO/OIE/FAO H5N1 Evolution Working Group ( 2012;). Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. . Influenza Other Respi Viruses 6:, 1–5. [CrossRef][PubMed]
    [Google Scholar]
  54. Xu X., Subbarao K., Cox N. J., Guo Y.. ( 1999;). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. . Virology 261:, 15–19. [CrossRef][PubMed]
    [Google Scholar]
  55. Yamada S., Suzuki Y., Suzuki T., Le M. Q., Nidom C. A., Sakai-Tagawa Y., Muramoto Y., Ito M., Kiso M.. & other authors ( 2006;). Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. . Nature 444:, 378–382. [CrossRef][PubMed]
    [Google Scholar]
  56. Yen H. L., Lipatov A. S., Ilyushina N. A., Govorkova E. A., Franks J., Yilmaz N., Douglas A., Hay A., Krauss S.. & other authors ( 2007;). Inefficient transmission of H5N1 influenza viruses in a ferret contact model. . J Virol 81:, 6890–6898. [CrossRef][PubMed]
    [Google Scholar]
  57. Yingst S. L., Saad M. D., Felt S. A.. ( 2006;). Qinghai-like H5N1 from domestic cats, northern Iraq. . Emerg Infect Dis 12:, 1295–1297. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057778-0
Loading
/content/journal/jgv/10.1099/vir.0.057778-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error