1887

Abstract

Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in , WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057729-0
2013-12-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2777.html?itemId=/content/journal/jgv/10.1099/vir.0.057729-0&mimeType=html&fmt=ahah

References

  1. Agama K. , Beach S. , Schoelz J. , Leisner S. M. . ( 2002; ). The 5' third of Cauliflower mosaic virus gene VI conditions resistance breakage in Arabidopsis ecotype Tsu-0. . Phytopathology 92:, 190–196. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alonso-Peral M. M. , Li J. , Li Y. , Allen R. S. , Schnippenkoetter W. , Ohms S. , White R. G. , Millar A. A. . ( 2010; ). The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. . Plant Physiol 154:, 757–771. [CrossRef] [PubMed]
    [Google Scholar]
  3. Angel C. A. , Schoelz J. E. . ( 2013; ). A survey of resistance to Tomato bushy stunt virus in the genus Nicotiana reveals that the hypersensitive response is triggered by one of three different viral proteins. . Mol Plant Microbe Interact 26:, 240–248. [CrossRef] [PubMed]
    [Google Scholar]
  4. Angel C. A. , Lutz L. , Yang X. , Rodriguez A. , Adair A. , Zhang Y. , Leisner S. M. , Nelson R. S. , Schoelz J. E. . ( 2013; ). The P6 protein of Cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin microfilaments. . Virology 443:, 363–374. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baughman G. A. , Jacobs J. D. , Howell S. H. . ( 1988; ). Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. . Proc Natl Acad Sci U S A 85:, 733–737. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bazzini A. A. , Mongelli V. C. , Hopp H. E. , del Vas M. , Asurmendi S. . ( 2007; ). A practical approach to the understanding and teaching of RNA silencing in plants. . Electron J Biotechnol 10:, 178–190. [CrossRef]
    [Google Scholar]
  7. Blevins T. , Rajeswaran R. , Shivaprasad P. V. , Beknazariants D. , Si-Ammour A. , Park H. S. , Vazquez F. , Robertson D. , Meins F. Jr . & other authors ( 2006; ). Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. . Nucleic Acids Res 34:, 6233–6246. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bonneville J. M. , Sanfaçon H. , Fütterer J. , Hohn T. . ( 1989; ). Posttranscriptional trans-activation in cauliflower mosaic virus. . Cell 59:, 1135–1143. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bureau M. , Leh V. , Haas M. , Geldreich A. , Ryabova L. , Yot P. , Keller M. . ( 2004; ). P6 protein of Cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana . . J Gen Virol 85:, 3765–3775. [CrossRef] [PubMed]
    [Google Scholar]
  10. Burgyán J. , Havelda Z. . ( 2011; ). Viral suppressors of RNA silencing. . Trends Plant Sci 16:, 265–272. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cecchini E. , Gong Z. H. , Geri C. , Covey S. N. , Milner J. J. . ( 1997; ). Transgenic Arabidopsis lines expressing gene VI from cauliflower mosaic virus variants exhibit a range of symptom-like phenotypes and accumulate inclusion bodies. . Mol Plant Microbe Interact 10:, 1094–1101. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cecchini E. , Al Kaff N. S. , Bannister A. , Giannakou M. E. , McCallum D. G. , Maule A. J. , Milner J. J. , Covey S. N. . ( 1998; ). Pathogenic interactions between variants of cauliflower mosaic virus and Arabidopsis thaliana. . J Exp Bot 49:, 731–737.[CrossRef]
    [Google Scholar]
  13. Cerritelli S. M. , Fedoroff O. Y. , Reid B. R. , Crouch R. J. . ( 1998; ). A common 40 amino acid motif in eukaryotic RNases H1 and caulimovirus ORF VI proteins binds to duplex RNAs. . Nucleic Acids Res 26:, 1834–1840. [CrossRef] [PubMed]
    [Google Scholar]
  14. Cole C. , Barber J. D. , Barton G. J. . ( 2008; ). The Jpred 3 secondary structure prediction server. . Nucleic Acids Res 36: (Web Server issue), W197–W201. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dalmay T. , Hamilton A. , Rudd S. , Angell S. , Baulcombe D. C. . ( 2000; ). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. . Cell 101:, 543–553. [CrossRef] [PubMed]
    [Google Scholar]
  16. De Tapia M. , Himmelbach A. , Hohn T. . ( 1993; ). Molecular dissection of the cauliflower mosaic virus translation transactivator. . EMBO J 12:, 3305–3314.[PubMed]
    [Google Scholar]
  17. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  18. Endres M. W. , Gregory B. D. , Gao Z. H. , Foreman A. W. , Mlotshwa S. , Ge X. , Pruss G. J. , Ecker J. R. , Bowman L. H. , Vance V. . ( 2010; ). Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. . PLoS Pathog 6:, e1000729. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fu Z. Q. , Yan S. , Saleh A. , Wang W. , Ruble J. , Oka N. , Mohan R. , Spoel S. H. , Tada Y. . & other authors ( 2012; ). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. . Nature 486:, 228–232.[PubMed]
    [Google Scholar]
  20. Geri C. , Love A. J. , Cecchini E. , Barrett S. J. , Laird J. , Covey S. N. , Milner J. J. . ( 2004; ). Arabidopsis mutants that suppress the phenotype induced by transgene-mediated expression of cauliflower mosaic virus (CaMV) gene VI are less susceptible to CaMV-infection and show reduced ethylene sensitivity. . Plant Mol Biol 56:, 111–124. [CrossRef] [PubMed]
    [Google Scholar]
  21. Haas M. , Bureau M. , Geldreich A. , Yot P. , Keller M. . ( 2002; ). Cauliflower mosaic virus: still in the news. . Mol Plant Pathol 3:, 419–429. [CrossRef] [PubMed]
    [Google Scholar]
  22. Haas M. , Geldreich A. , Bureau M. , Dupuis L. , Leh V. , Vetter G. , Kobayashi K. , Hohn T. , Ryabova L. . & other authors ( 2005; ). The open reading frame VI product of Cauliflower mosaic virus is a nucleocytoplasmic protein: its N terminus mediates its nuclear export and formation of electron-dense viroplasms. . Plant Cell 17:, 927–943. [CrossRef] [PubMed]
    [Google Scholar]
  23. Haas G. , Azevedo J. , Moissiard G. , Geldreich A. , Himber C. , Bureau M. , Fukuhara T. , Keller M. , Voinnet O. . ( 2008; ). Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. . EMBO J 27:, 2102–2112. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hapiak M. , Li Y. Z. , Agama K. , Swade S. , Okenka G. , Falk J. , Khandekar S. , Raikhy G. , Anderson A. . & other authors ( 2008; ). Cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. . Virus Res 138:, 119–129. [CrossRef] [PubMed]
    [Google Scholar]
  25. Harries P. A. , Palanichelvam K. , Yu W. , Schoelz J. E. , Nelson R. S. . ( 2009; ). The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. . Plant Physiol 149:, 1005–1016. [CrossRef] [PubMed]
    [Google Scholar]
  26. Király L. , Bourque J. E. , Schoelz J. E. . ( 1998; ). Temporal and spatial appearance of recombinant viruses formed between cauliflower mosaic virus (CaMV) and CaMV sequences present in transgenic Nicotiana bigelovii . . Mol Plant Microbe Interact 11:, 309–316. [CrossRef]
    [Google Scholar]
  27. Kobayashi K. , Hohn T. . ( 2003; ). Dissection of cauliflower mosaic virus transactivator/viroplasmin reveals distinct essential functions in basic virus replication. . J Virol 77:, 8577–8583. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kobayashi K. , Hohn T. . ( 2004; ). The avirulence domain of Cauliflower mosaic virus transactivator/viroplasmin is a determinant of viral virulence in susceptible hosts. . Mol Plant Microbe Interact 17:, 475–483. [CrossRef] [PubMed]
    [Google Scholar]
  29. Latham J. , Wilson A. . ( 2013; ). Potentially dangerous virus gene hidden in commercial GM crops. Institute of Science in Society (Report). . http://www.i-sis.org.uk/Hazardous_Virus_Gene_Discovered_in_GM_Crops.php
    [Google Scholar]
  30. Leh V. , Yot P. , Keller M. . ( 2000; ). The cauliflower mosaic virus translational transactivator interacts with the 60S ribosomal subunit protein L18 of Arabidopsis thaliana . . Virology 266:, 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lewsey M. G. , Murphy A. M. , Maclean D. , Dalchau N. , Westwood J. H. , Macaulay K. , Bennett M. H. , Moulin M. , Hanke D. E. . & other authors ( 2010; ). Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. . Mol Plant Microbe Interact 23:, 835–845. [CrossRef] [PubMed]
    [Google Scholar]
  32. Li Y. Z. , Leisner S. M. . ( 2002; ). Multiple domains within the Cauliflower mosaic virus gene VI product interact with the full-length protein. . Mol Plant Microbe Interact 15:, 1050–1057. [CrossRef] [PubMed]
    [Google Scholar]
  33. Li F. , Pignatta D. , Bendix C. , Brunkard J. O. , Cohn M. M. , Tung J. , Sun H. Y. , Kumar P. , Baker B. . ( 2012; ). MicroRNA regulation of plant innate immune receptors. . Proc Natl Acad Sci U S A 109:, 1790–1795. [CrossRef] [PubMed]
    [Google Scholar]
  34. Love A. J. , Yun B. W. , Laval V. , Loake G. J. , Milner J. J. . ( 2005; ). Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. . Plant Physiol 139:, 935–948. [CrossRef] [PubMed]
    [Google Scholar]
  35. Love A. J. , Laird J. , Holt J. , Hamilton A. J. , Sadanandom A. , Milner J. J. . ( 2007; ). Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. . J Gen Virol 88:, 3439–3444. [CrossRef] [PubMed]
    [Google Scholar]
  36. Love A. J. , Geri C. , Laird J. , Carr C. , Yun B. W. , Loake G. J. , Tada Y. , Sadanandom A. , Milner J. J. . ( 2012; ). Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. . PLoS ONE 7:, e47535. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lozano-Durán R. , Rosas-Díaz T. , Gusmaroli G. , Luna A. P. , Taconnat L. , Deng X. W. , Bejarano E. R. . ( 2011; ). Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana . . Plant Cell 23:, 1014–1032. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lutz L. , Raikhy G. , Leisner S. M. . ( 2012; ). Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. . Virus Res 170:, 150–153. [CrossRef] [PubMed]
    [Google Scholar]
  39. Moissiard G. , Voinnet O. . ( 2006; ). RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. . Proc Natl Acad Sci U S A 103:, 19593–19598. [CrossRef] [PubMed]
    [Google Scholar]
  40. Mukhtar M. S. , Nishimura M. T. , Dangl J. . ( 2009; ). NPR1 in plant defense: it's not over ’til it’s turned over. . Cell 137:, 804–806. [CrossRef] [PubMed]
    [Google Scholar]
  41. Palanichelvam K. , Schoelz J. E. . ( 2002; ). A comparative analysis of the avirulence and translational transactivator functions of gene VI of Cauliflower mosaic virus . . Virology 293:, 225–233. [CrossRef] [PubMed]
    [Google Scholar]
  42. Palanichelvam K. , Cole A. B. , Shababi M. , Schoelz J. E. . ( 2000; ). Agroinfiltration of Cauliflower mosaic virus gene VI elicits hypersensitive response in Nicotiana species. . Mol Plant Microbe Interact 13:, 1275–1279. [CrossRef] [PubMed]
    [Google Scholar]
  43. Park H. S. , Himmelbach A. , Browning K. S. , Hohn T. , Ryabova L. A. . ( 2001; ). A plant viral “reinitiation” factor interacts with the host translational machinery. . Cell 106:, 723–733. [CrossRef] [PubMed]
    [Google Scholar]
  44. Pei H. , Ma N. , Chen J. , Zheng Y. , Tian J. , Li J. , Zhang S. , Fei Z. , Gao J. . ( 2013; ). Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. . PLoS ONE 8:, e64290. [CrossRef] [PubMed]
    [Google Scholar]
  45. Podevin N. , du Jardin P. . ( 2012; ). Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants. . GM Crops Food 3:, 296–300. [CrossRef] [PubMed]
    [Google Scholar]
  46. Rubio-Somoza I. , Weigel D. . ( 2011; ). MicroRNA networks and developmental plasticity in plants. . Trends Plant Sci 16:, 258–264. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rubio-Somoza I. , Cuperus J. T. , Weigel D. , Carrington J. C. . ( 2009; ). Regulation and functional specialization of small RNA-target nodes during plant development. . Curr Opin Plant Biol 12:, 622–627. [CrossRef] [PubMed]
    [Google Scholar]
  48. Ryabova L. A. , Pooggin M. M. , Hohn T. . ( 2002; ). Viral strategies of translation initiation: ribosomal shunt and reinitiation. . Prog Nucleic Acid Res Mol Biol 72:, 1–39. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ryabova L. , Park H. S. , Hohn T. . ( 2004; ). Control of translation reinitiation on the cauliflower mosaic virus (CaMV) polycistronic RNA. . Biochem Soc Trans 32:, 592–596. [CrossRef] [PubMed]
    [Google Scholar]
  50. Ryabova L. A. , Pooggin M. M. , Hohn T. . ( 2006; ). Translation reinitiation and leaky scanning in plant viruses. . Virus Res 119:, 52–62. [CrossRef] [PubMed]
    [Google Scholar]
  51. Sansregret R. , Dufour V. , Langlois M. , Daayf F. , Dunoyer P. , Voinnet O. , Bouarab K. . ( 2013; ). Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. . PLoS Pathog 9:, e1003435. [CrossRef] [PubMed]
    [Google Scholar]
  52. Schoelz J. E. , Shepherd R. J. . ( 1988; ). Host range control of cauliflower mosaic virus. . Virology 162:, 30–37. [CrossRef] [PubMed]
    [Google Scholar]
  53. Schoelz J. , Shepherd R. J. , Daubert S. . ( 1986; ). Region VI of cauliflower mosaic virus encodes a host range determinant. . Mol Cell Biol 6:, 2632–2637.[PubMed]
    [Google Scholar]
  54. Schommer C. , Palatnik J. F. , Aggarwal P. , Chételat A. , Cubas P. , Farmer E. E. , Nath U. , Weigel D. . ( 2008; ). Control of jasmonate biosynthesis and senescence by miR319 targets. . PLoS Biol 6:, e230. [CrossRef] [PubMed]
    [Google Scholar]
  55. Schwach F. , Vaistij F. E. , Jones L. , Baulcombe D. C. . ( 2005; ). An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. . Plant Physiol 138:, 1842–1852. [CrossRef] [PubMed]
    [Google Scholar]
  56. Shivaprasad P. V. , Rajeswaran R. , Blevins T. , Schoelz J. , Meins F. Jr , Hohn T. , Pooggin M. M. . ( 2008; ). The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis . . Nucleic Acids Res 36:, 5896–5909. [CrossRef] [PubMed]
    [Google Scholar]
  57. Smith L. A. . ( 2007; ). Interactions between cauliflower mosaic virus and auxin signalling. PhD Thesis, University of Glasgow;, UK:.
    [Google Scholar]
  58. Stratford R. , Covey S. N. . ( 1989; ). Segregation of cauliflower mosaic virus symptom genetic determinants. . Virology 172:, 451–459. [CrossRef] [PubMed]
    [Google Scholar]
  59. Tsuge S. , Kobayashi K. , Nakayashiki H. , Okuno T. , Furusawa I. . ( 1994; ). Replication of cauliflower mosaic virus ORF 1 mutants in turnip protoplasts. . Ann Phytopathological Soc Jpn 60:, 27–35. [CrossRef]
    [Google Scholar]
  60. Vain P. , Harvey A. , Worland B. , Ross S. , Snape J. W. , Lonsdale D. . ( 2004; ). The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system. . Transgenic Res 13:, 593–603. [CrossRef] [PubMed]
    [Google Scholar]
  61. Vazquez F. , Legrand S. , Windels D. . ( 2010; ). The biosynthetic pathways and biological scopes of plant small RNAs. . Trends Plant Sci 15:, 337–345. [CrossRef] [PubMed]
    [Google Scholar]
  62. Voinnet O. , Rivas S. , Mestre P. , Baulcombe D. . ( 2003; ). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. . Plant J 33:, 949–956. [CrossRef] [PubMed]
    [Google Scholar]
  63. Volko S. M. , Boller T. , Ausubel F. M. . ( 1998; ). Isolation of new Arabidopsis mutants with enhanced disease susceptibility to Pseudomonas syringae by direct screening. . Genetics 149:, 537–548.[PubMed]
    [Google Scholar]
  64. Waterhouse A. M. , Procter J. B. , Martin D. M. , Clamp M. , Barton G. J. . ( 2009; ). Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. . Bioinformatics 25:, 1189–1191. [CrossRef] [PubMed]
    [Google Scholar]
  65. Wu Y. , Zhang D. , Chu J. Y. , Boyle P. , Wang Y. , Brindle I. D. , De Luca V. , Després C. . ( 2012; ). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. . Cell Rep 1:, 639–647. [CrossRef] [PubMed]
    [Google Scholar]
  66. Yang J. Y. , Iwasaki M. , Machida C. , Machida Y. , Zhou X. , Chua N. H. . ( 2008; ). βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. . Genes Dev 22:, 2564–2577. [CrossRef] [PubMed]
    [Google Scholar]
  67. Zhang B. , Jin Z. , Xie D. . ( 2012; ). Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology. . J Integr Plant Biol 54:, 73–86. [CrossRef] [PubMed]
    [Google Scholar]
  68. Zijlstra C. , Hohn T. . ( 1992; ). Cauliflower mosaic virus gene VI controls translation from dicistronic expression units in transgenic Arabidopsis plants. . Plant Cell 4:, 1471–1484.[PubMed] [CrossRef]
    [Google Scholar]
  69. Zijlstra C. , Schärer-Hernández N. , Gal S. , Hohn T. . ( 1996; ). Arabidopsis thaliana expressing the cauliflower mosaic virus ORF VI transgene has a late flowering phenotype. . Virus Genes 13:, 5–17. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057729-0
Loading
/content/journal/jgv/10.1099/vir.0.057729-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error