1887

Abstract

Beta-human papillomaviruses (β-HPV) infect cutaneous epithelia, and accumulating evidence suggests that the virus may act as a co-factor with UV-induced DNA damage in the development and progression of non-melanoma skin cancer, although the molecular mechanisms involved are poorly understood. The E6 protein of cutaneous β-HPV types encodes functions consistent with a role in tumorigenesis, and E6 expression can result in papilloma formation in transgenic animals. The E6 proteins of high-risk α-HPV types, which are associated with the development of anogenital cancers, have a conserved 4 aa motif at their extreme C terminus that binds to specific PDZ domain-containing proteins to promote cell invasion. Likewise, the high-risk β-HPVs HPV5 and HPV8 E6 proteins also share a conserved C-terminal motif, but this is markedly different from that of α-HPV types, implying functional differences. Using binding and functional studies, we have shown that β-HPV E6 proteins target β-integrin using this C-terminal motif. E6 expression reduced membrane localization of β-integrin, but increased overall levels of β-integrin protein and its downstream effector focal adhesion kinase in human keratinocytes. Altered β-integrin localization due to E6 expression was associated with actin cytoskeleton rearrangement and increased cell migration that was abolished by point mutations in the C-terminal motif of E6. We concluded that modulation of β-integrin signalling by E6 proteins may contribute towards the pathogenicity of these β-HPV types.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057695-0
2014-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/123.html?itemId=/content/journal/jgv/10.1099/vir.0.057695-0&mimeType=html&fmt=ahah

References

  1. Akgül B., Zigrino P., Frith D., Hanrahan S., Storey A.. ( 2009; ). Proteomic analysis reveals the actin cytoskeleton as cellular target for the human papillomavirus type 8. . Virology 386:, 1–5. [CrossRef] [PubMed]
    [Google Scholar]
  2. Akgül B., Bostanci N., Westphal K., Nindl I., Navsaria H., Storey A., Pfister H.. ( 2010; ). Human papillomavirus 5 and 8 E6 downregulate interleukin-8 secretion in primary human keratinocytes. . J Gen Virol 91:, 888–892. [CrossRef] [PubMed]
    [Google Scholar]
  3. Au Yeung C. L., Tsang T. Y., Yau P. L., Kwok T. T.. ( 2011; ). Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. . Oncogene 30:, 2401–2410. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ben Khalifa Y., Teissier S., Tan M. K., Phan Q. T., Daynac M., Wong W. Q., Thierry F.. ( 2011; ). The human papillomavirus E6 oncogene represses a cell adhesion pathway and disrupts focal adhesion through degradation of TAp63β upon transformation. . PLoS Pathog 7:, e1002256. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brakebusch C., Fässler R.. ( 2005; ). β1 Integrin function in vivo: adhesion, migration and more. . Cancer Metastasis Rev 24:, 403–411. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brakebusch C., Grose R., Quondamatteo F., Ramirez A., Jorcano J. L., Pirro A., Svensson M., Herken R., Sasaki T.. & other authors ( 2000; ). Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. . EMBO J 19:, 3990–4003. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brimer N., Lyons C., Wallberg A. E., Vande Pol S. B.. ( 2012; ). Cutaneous papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling. . Oncogene 31:, 4639–4646. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carroll J. M., Romero M. R., Watt F. M.. ( 1995; ). Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. . Cell 83:, 957–968. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chan K. T., Cortesio C. L., Huttenlocher A.. ( 2007; ). Integrins in cell migration. . Methods Enzymol 426:, 47–67. [CrossRef] [PubMed]
    [Google Scholar]
  10. Charette S. T., McCance D. J.. ( 2007; ). The E7 protein from human papillomavirus type 16 enhances keratinocyte migration in an Akt-dependent manner. . Oncogene 26:, 7386–7390. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cornet I., Bouvard V., Campo M. S., Thomas M., Banks L., Gissmann L., Lamartine J., Sylla B. S., Accardi R., Tommasino M.. ( 2012; ). Comparative analysis of transforming properties of E6 and E7 from different beta human papillomavirus types. . J Virol 86:, 2366–2370. [CrossRef] [PubMed]
    [Google Scholar]
  12. de Villiers E. M., Lavergne D., McLaren K., Benton E. C.. ( 1997; ). Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. . Int J Cancer 73:, 356–361. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dickson M. A., Hahn W. C., Ino Y., Ronfard V., Wu J. Y., Weinberg R. A., Louis D. N., Li F. P., Rheinwald J. G.. ( 2000; ). Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. . Mol Cell Biol 20:, 1436–1447. [CrossRef] [PubMed]
    [Google Scholar]
  14. Diepgen T. L., Mahler V.. ( 2002; ). The epidemiology of skin cancer. . Br J Dermatol 146: (Suppl 61), 1–6. [CrossRef] [PubMed]
    [Google Scholar]
  15. Du J., Chen X., Liang X., Zhang G., Xu J., He L., Zhan Q., Feng X. Q., Chien S., Yang C.. ( 2011; ). Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. . Proc Natl Acad Sci U S A 108:, 9466–9471. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ezratty E. J., Bertaux C., Marcantonio E. E., Gundersen G. G.. ( 2009; ). Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. . J Cell Biol 187:, 733–747. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gardiol D., Kühne C., Glaunsinger B., Lee S. S., Javier R., Banks L.. ( 1999; ). Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. . Oncogene 18:, 5487–5496. [CrossRef] [PubMed]
    [Google Scholar]
  18. Giampieri S., Storey A.. ( 2004; ). Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18. . Br J Cancer 90:, 2203–2209.[PubMed]
    [Google Scholar]
  19. Goldenthal K. L., Hedman K., Chen J. W., August J. T., Willingham M. C.. ( 1985; ). Postfixation detergent treatment for immunofluorescence suppresses localization of some integral membrane proteins. . J Histochem Cytochem 33:, 813–820. [CrossRef] [PubMed]
    [Google Scholar]
  20. Goldfinger L. E., Hopkinson S. B., deHart G. W., Collawn S., Couchman J. R., Jones J. C.. ( 1999; ). The α3 laminin subunit, α6β4 and α3β1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. . J Cell Sci 112:, 2615–2629.[PubMed]
    [Google Scholar]
  21. Grose R., Hutter C., Bloch W., Thorey I., Watt F. M., Fässler R., Brakebusch C., Werner S.. ( 2002; ). A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. . Development 129:, 2303–2315.[PubMed]
    [Google Scholar]
  22. Gül U., Kiliç A., Gönül M., Cakmak S. K., Bayis S. S.. ( 2007; ). Clinical aspects of epidermodysplasia verruciformis and review of the literature. . Int J Dermatol 46:, 1069–1072. [CrossRef] [PubMed]
    [Google Scholar]
  23. Hartevelt M. M., Bavinck J. N., Kootte A. M., Vermeer B. J., Vandenbroucke J. P.. ( 1990; ). Incidence of skin cancer after renal transplantation in The Netherlands. . Transplantation 49:, 506–509. [CrossRef] [PubMed]
    [Google Scholar]
  24. Harwood C. A., Surentheran T., McGregor J. M., Spink P. J., Leigh I. M., Breuer J., Proby C. M.. ( 2000; ). Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. . J Med Virol 61:, 289–297. [CrossRef] [PubMed]
    [Google Scholar]
  25. Harwood C. A., Surentheran T., Sasieni P., Proby C. M., Bordea C., Leigh I. M., Wojnarowska F., Breuer J., McGregor J. M.. ( 2004; ). Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. . Br J Dermatol 150:, 949–957. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hertle M. D., Kubler M. D., Leigh I. M., Watt F. M.. ( 1992; ). Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. . J Clin Invest 89:, 1892–1901. [CrossRef] [PubMed]
    [Google Scholar]
  27. Howie H. L., Koop J. I., Weese J., Robinson K., Wipf G., Kim L., Galloway D. A.. ( 2011; ). Beta-HPV 5 and 8 E6 promote p300 degradation by blocking AKT/p300 association. . PLoS Pathog 7:, e1002211. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hudson J. B., Bedell M. A., McCance D. J., Laiminis L. A.. ( 1990; ). Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. . J Virol 64:, 519–526.[PubMed]
    [Google Scholar]
  29. Huibregtse J. M., Scheffner M., Howley P. M.. ( 1991; ). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. . EMBO J 10:, 4129–4135.[PubMed]
    [Google Scholar]
  30. Humphries J. D., Byron A., Humphries M. J.. ( 2006; ). Integrin ligands at a glance. . J Cell Sci 119:, 3901–3903. [CrossRef] [PubMed]
    [Google Scholar]
  31. Iftner T., Elbel M., Schopp B., Hiller T., Loizou J. I., Caldecott K. W., Stubenrauch F.. ( 2002; ). Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. . EMBO J 21:, 4741–4748. [CrossRef] [PubMed]
    [Google Scholar]
  32. Jackson S., Storey A.. ( 2000; ). E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. . Oncogene 19:, 592–598. [CrossRef] [PubMed]
    [Google Scholar]
  33. Jackson S., Harwood C., Thomas M., Banks L., Storey A.. ( 2000; ). Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. . Genes Dev 14:, 3065–3073. [CrossRef] [PubMed]
    [Google Scholar]
  34. Jackson S., Ghali L., Harwood C., Storey A.. ( 2002; ). Reduced apoptotic levels in squamous but not basal cell carcinomas correlates with detection of cutaneous human papillomavirus. . Br J Cancer 87:, 319–323. [CrossRef] [PubMed]
    [Google Scholar]
  35. Jha S., Vande Pol S., Banerjee N. S., Dutta A. B., Chow L. T., Dutta A.. ( 2010; ). Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. . Mol Cell 38:, 700–711. [CrossRef] [PubMed]
    [Google Scholar]
  36. Jones P. H., Watt F. M.. ( 1993; ). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. . Cell 73:, 713–724. [CrossRef] [PubMed]
    [Google Scholar]
  37. Jones D. L., Alani R. M., Münger K.. ( 1997; ). The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2 . . Genes Dev 11:, 2101–2111. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kim L. T., Ishihara S., Lee C. C., Akiyama S. K., Yamada K. M., Grinnell F.. ( 1992; ). Altered glycosylation and cell surface expression of beta 1 integrin receptors during keratinocyte activation. . J Cell Sci 103:, 743–753.[PubMed]
    [Google Scholar]
  39. Kiviat N. B.. ( 1999; ). Papillomaviruses in non-melanoma skin cancer: epidemiological aspects. . Semin Cancer Biol 9:, 397–403. [CrossRef] [PubMed]
    [Google Scholar]
  40. Kiyono T., Hiraiwa A., Fujita M., Hayashi Y., Akiyama T., Ishibashi M.. ( 1997; ). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. . Proc Natl Acad Sci U S A 94:, 11612–11616. [CrossRef] [PubMed]
    [Google Scholar]
  41. Kühne C., Gardiol D., Guarnaccia C., Amenitsch H., Banks L.. ( 2000; ). Differential regulation of human papillomavirus E6 by protein kinase A: conditional degradation of human discs large protein by oncogenic E6. . Oncogene 19:, 5884–5891. [CrossRef] [PubMed]
    [Google Scholar]
  42. Larjava H., Salo T., Haapasalmi K., Kramer R. H., Heino J.. ( 1993; ). Expression of integrins and basement membrane components by wound keratinocytes. . J Clin Invest 92:, 1425–1435. [CrossRef] [PubMed]
    [Google Scholar]
  43. Lee S. S., Glaunsinger B., Mantovani F., Banks L., Javier R. T.. ( 2000; ). Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. . J Virol 74:, 9680–9693. [CrossRef] [PubMed]
    [Google Scholar]
  44. Marcuzzi G. P., Hufbauer M., Kasper H. U., Weissenborn S. J., Smola S., Pfister H.. ( 2009; ). Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. . J Gen Virol 90:, 2855–2864. [CrossRef] [PubMed]
    [Google Scholar]
  45. McCormack S. J., Brazinski S. E., Moore J. L. Jr, Werness B. A., Goldstein D. J.. ( 1997; ). Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. . Oncogene 15:, 265–274. [CrossRef] [PubMed]
    [Google Scholar]
  46. Mettouchi A., Meneguzzi G.. ( 2006; ). Distinct roles of β1 integrins during angiogenesis. . Eur J Cell Biol 85:, 243–247. [CrossRef] [PubMed]
    [Google Scholar]
  47. Michel A., Kopp-Schneider A., Zentgraf H., Gruber A. D., de Villiers E. M.. ( 2006; ). E6/E7 expression of human papillomavirus type 20 (HPV-20) and HPV-27 influences proliferation and differentiation of the skin in UV-irradiated SKH-hr1 transgenic mice. . J Virol 80:, 11153–11164. [CrossRef] [PubMed]
    [Google Scholar]
  48. Moody C. A., Laimins L. A.. ( 2010; ). Human papillomavirus oncoproteins: pathways to transformation. . Nat Rev Cancer 10:, 550–560. [CrossRef] [PubMed]
    [Google Scholar]
  49. Nakagawa S., Huibregtse J. M.. ( 2000; ). Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. . Mol Cell Biol 20:, 8244–8253. [CrossRef] [PubMed]
    [Google Scholar]
  50. Ng T., Shima D., Squire A., Bastiaens P. I., Gschmeissner S., Humphries M. J., Parker P. J.. ( 1999; ). PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. . EMBO J 18:, 3909–3923. [CrossRef] [PubMed]
    [Google Scholar]
  51. Nguyen M. L., Nguyen M. M., Lee D., Griep A. E., Lambert P. F.. ( 2003; ). The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. . J Virol 77:, 6957–6964. [CrossRef] [PubMed]
    [Google Scholar]
  52. Nominé Y., Masson M., Charbonnier S., Zanier K., Ristriani T., Deryckère F., Sibler A. P., Desplancq D., Atkinson R. A.. & other authors ( 2006; ). Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. . Mol Cell 21:, 665–678. [CrossRef] [PubMed]
    [Google Scholar]
  53. Orth G.. ( 1986; ). Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. . Ciba Found Symp 120:, 157–174.[PubMed]
    [Google Scholar]
  54. Pfister H.. ( 2003; ). Chapter 8: Human papillomavirus and skin cancer. . J Natl Cancer Inst Monogr 2003:, 52–56. [CrossRef] [PubMed]
    [Google Scholar]
  55. Pfister H., Ter Schegget J.. ( 1997; ). Role of HPV in cutaneous premalignant and malignant tumors. . Clin Dermatol 15:, 335–347. [CrossRef] [PubMed]
    [Google Scholar]
  56. Pim D., Thomas M., Javier R., Gardiol D., Banks L.. ( 2000; ). HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. . Oncogene 19:, 719–725. [CrossRef] [PubMed]
    [Google Scholar]
  57. Pim D., Thomas M., Banks L.. ( 2002; ). Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins. . Oncogene 21:, 8140–8148. [CrossRef] [PubMed]
    [Google Scholar]
  58. Proby C. M., Harwood C. A., Neale R. E., Green A. C., Euvrard S., Naldi L., Tessari G., Feltkamp M. C., de Koning M. N.. & other authors ( 2011; ). A case–control study of betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients. . Am J Transplant 11:, 1498–1508. [CrossRef] [PubMed]
    [Google Scholar]
  59. Rozenblatt-Rosen O., Deo R. C., Padi M., Adelmant G., Calderwood M. A., Rolland T., Grace M., Dricot A., Askenazi M.. & other authors ( 2012; ). Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. . Nature 487:, 491–495. [CrossRef] [PubMed]
    [Google Scholar]
  60. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M.. ( 1990; ). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. . Cell 63:, 1129–1136. [CrossRef] [PubMed]
    [Google Scholar]
  61. Schober M., Fuchs E.. ( 2011; ). Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. . Proc Natl Acad Sci U S A 108:, 10544–10549. [CrossRef] [PubMed]
    [Google Scholar]
  62. Shen X., Li C. C., Aponte A. M., Shen R. F., Billings E. M., Moss J., Vaughan M.. ( 2012; ). Brefeldin A-inhibited ADP-ribosylation factor activator BIG2 regulates cell migration via integrin β1 cycling and actin remodeling. . Proc Natl Acad Sci U S A 109:, 14464–14469. [CrossRef] [PubMed]
    [Google Scholar]
  63. Sherman L., Schlegel R.. ( 1996; ). Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. . J Virol 70:, 3269–3279.[PubMed]
    [Google Scholar]
  64. Simmonds M., Storey A.. ( 2008; ). Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. . Int J Cancer 123:, 2260–2266. [CrossRef] [PubMed]
    [Google Scholar]
  65. Simpson C. L., Patel D. M., Green K. J.. ( 2011; ). Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. . Nat Rev Mol Cell Biol 12:, 565–580. [CrossRef] [PubMed]
    [Google Scholar]
  66. Sivamani R. K., Garcia M. S., Isseroff R. R.. ( 2007; ). Wound re-epithelialization: modulating keratinocyte migration in wound healing. . Front Biosci 12:, 2849–2868. [CrossRef] [PubMed]
    [Google Scholar]
  67. Slack J. K., Adams R. B., Rovin J. D., Bissonette E. A., Stoker C. E., Parsons J. T.. ( 2001; ). Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. . Oncogene 20:, 1152–1163. [CrossRef] [PubMed]
    [Google Scholar]
  68. Spangle J. M., Munger K.. ( 2013; ). The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. . PLoS Pathog 9:, e1003237. [CrossRef] [PubMed]
    [Google Scholar]
  69. Stockfleth E., Ulrich C., Meyer T., Arndt R., Christophers E.. ( 2001; ). Skin diseases following organ transplantation – risk factors and new therapeutic approaches. . Transplant Proc 33:, 1848–1853. [CrossRef] [PubMed]
    [Google Scholar]
  70. Storey A., Thomas M., Kalita A., Harwood C., Gardiol D., Mantovani F., Breuer J., Leigh I. M., Matlashewski G., Banks L.. ( 1998; ). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. . Nature 393:, 229–234. [CrossRef] [PubMed]
    [Google Scholar]
  71. Tan M. J., White E. A., Sowa M. E., Harper J. W., Aster J. C., Howley P. M.. ( 2012; ). Cutaneous β-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress notch signaling. . Proc Natl Acad Sci U S A 109:, E1473–E1480. [CrossRef] [PubMed]
    [Google Scholar]
  72. Thomas M., Laura R., Hepner K., Guccione E., Sawyers C., Lasky L., Banks L.. ( 2002; ). Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. . Oncogene 21:, 5088–5096. [CrossRef] [PubMed]
    [Google Scholar]
  73. Thomas M., Massimi P., Navarro C., Borg J. P., Banks L.. ( 2005; ). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. . Oncogene 24:, 6222–6230. [CrossRef] [PubMed]
    [Google Scholar]
  74. Tomlins C., Storey A.. ( 2010; ). Cutaneous HPV5 E6 causes increased expression of osteoprotegerin and interleukin 6 which contribute to evasion of UV-induced apoptosis. . Carcinogenesis 31:, 2155–2164. [CrossRef] [PubMed]
    [Google Scholar]
  75. Vassilieva E. V., Gerner-Smidt K., Ivanov A. I., Nusrat A.. ( 2008; ). Lipid rafts mediate internalization of β1-integrin in migrating intestinal epithelial cells. . Am J Physiol Gastrointest Liver Physiol 295:, G965–G976. [CrossRef] [PubMed]
    [Google Scholar]
  76. Wade R., Brimer N., Vande Pol S.. ( 2008; ). Transformation by bovine papillomavirus type 1 E6 requires paxillin. . J Virol 82:, 5962–5966. [CrossRef] [PubMed]
    [Google Scholar]
  77. Wallace N. A., Robinson K., Howie H. L., Galloway D. A.. ( 2012; ). HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage. . PLoS Pathog 8:, e1002807. [CrossRef] [PubMed]
    [Google Scholar]
  78. Wang S., Pang T., Gao M., Kang H., Ding W., Sun X., Zhao Y., Zhu W., Tang X.. & other authors ( 2013; ). HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. . FEBS Lett 587:, 690–697. [CrossRef] [PubMed]
    [Google Scholar]
  79. Watson R. A., Thomas M., Banks L., Roberts S.. ( 2003; ). Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. . J Cell Sci 116:, 4925–4934. [CrossRef] [PubMed]
    [Google Scholar]
  80. Weissenborn S., Neale R. E., Waterboer T., Abeni D., Bavinck J. N., Green A. C., Harwood C. A., Euvrard S., Feltkamp M. C.. & other authors ( 2012; ). Beta-papillomavirus DNA loads in hair follicles of immunocompetent people and organ transplant recipients. . Med Microbiol Immunol (Berl) 201:, 117–125. [CrossRef] [PubMed]
    [Google Scholar]
  81. Werness B. A., Levine A. J., Howley P. M.. ( 1990; ). Association of human papillomavirus types 16 and 18 E6 proteins with p53. . Science 248:, 76–79. [CrossRef] [PubMed]
    [Google Scholar]
  82. Zhang Y., Dasgupta J., Ma R. Z., Banks L., Thomas M., Chen X. S.. ( 2007; ). Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. . J Virol 81:, 3618–3626. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057695-0
Loading
/content/journal/jgv/10.1099/vir.0.057695-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error