1887

Abstract

Beta-human papillomaviruses (β-HPV) infect cutaneous epithelia, and accumulating evidence suggests that the virus may act as a co-factor with UV-induced DNA damage in the development and progression of non-melanoma skin cancer, although the molecular mechanisms involved are poorly understood. The E6 protein of cutaneous β-HPV types encodes functions consistent with a role in tumorigenesis, and E6 expression can result in papilloma formation in transgenic animals. The E6 proteins of high-risk α-HPV types, which are associated with the development of anogenital cancers, have a conserved 4 aa motif at their extreme C terminus that binds to specific PDZ domain-containing proteins to promote cell invasion. Likewise, the high-risk β-HPVs HPV5 and HPV8 E6 proteins also share a conserved C-terminal motif, but this is markedly different from that of α-HPV types, implying functional differences. Using binding and functional studies, we have shown that β-HPV E6 proteins target β-integrin using this C-terminal motif. E6 expression reduced membrane localization of β-integrin, but increased overall levels of β-integrin protein and its downstream effector focal adhesion kinase in human keratinocytes. Altered β-integrin localization due to E6 expression was associated with actin cytoskeleton rearrangement and increased cell migration that was abolished by point mutations in the C-terminal motif of E6. We concluded that modulation of β-integrin signalling by E6 proteins may contribute towards the pathogenicity of these β-HPV types.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057695-0
2014-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/123.html?itemId=/content/journal/jgv/10.1099/vir.0.057695-0&mimeType=html&fmt=ahah

References

  1. Akgül B., Zigrino P., Frith D., Hanrahan S., Storey A. 2009; Proteomic analysis reveals the actin cytoskeleton as cellular target for the human papillomavirus type 8. Virology 386:1–5 [View Article][PubMed]
    [Google Scholar]
  2. Akgül B., Bostanci N., Westphal K., Nindl I., Navsaria H., Storey A., Pfister H. 2010; Human papillomavirus 5 and 8 E6 downregulate interleukin-8 secretion in primary human keratinocytes. J Gen Virol 91:888–892 [View Article][PubMed]
    [Google Scholar]
  3. Au Yeung C. L., Tsang T. Y., Yau P. L., Kwok T. T. 2011; Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 30:2401–2410 [View Article][PubMed]
    [Google Scholar]
  4. Ben Khalifa Y., Teissier S., Tan M. K., Phan Q. T., Daynac M., Wong W. Q., Thierry F. 2011; The human papillomavirus E6 oncogene represses a cell adhesion pathway and disrupts focal adhesion through degradation of TAp63β upon transformation. PLoS Pathog 7:e1002256 [View Article][PubMed]
    [Google Scholar]
  5. Brakebusch C., Fässler R. 2005; β1 Integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev 24:403–411 [View Article][PubMed]
    [Google Scholar]
  6. Brakebusch C., Grose R., Quondamatteo F., Ramirez A., Jorcano J. L., Pirro A., Svensson M., Herken R., Sasaki T.other authors 2000; Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J 19:3990–4003 [View Article][PubMed]
    [Google Scholar]
  7. Brimer N., Lyons C., Wallberg A. E., Vande Pol S. B. 2012; Cutaneous papillomavirus E6 oncoproteins associate with MAML1 to repress transactivation and NOTCH signaling. Oncogene 31:4639–4646 [View Article][PubMed]
    [Google Scholar]
  8. Carroll J. M., Romero M. R., Watt F. M. 1995; Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83:957–968 [View Article][PubMed]
    [Google Scholar]
  9. Chan K. T., Cortesio C. L., Huttenlocher A. 2007; Integrins in cell migration. Methods Enzymol 426:47–67 [View Article][PubMed]
    [Google Scholar]
  10. Charette S. T., McCance D. J. 2007; The E7 protein from human papillomavirus type 16 enhances keratinocyte migration in an Akt-dependent manner. Oncogene 26:7386–7390 [View Article][PubMed]
    [Google Scholar]
  11. Cornet I., Bouvard V., Campo M. S., Thomas M., Banks L., Gissmann L., Lamartine J., Sylla B. S., Accardi R., Tommasino M. 2012; Comparative analysis of transforming properties of E6 and E7 from different beta human papillomavirus types. J Virol 86:2366–2370 [View Article][PubMed]
    [Google Scholar]
  12. de Villiers E. M., Lavergne D., McLaren K., Benton E. C. 1997; Prevailing papillomavirus types in non-melanoma carcinomas of the skin in renal allograft recipients. Int J Cancer 73:356–361 [View Article][PubMed]
    [Google Scholar]
  13. Dickson M. A., Hahn W. C., Ino Y., Ronfard V., Wu J. Y., Weinberg R. A., Louis D. N., Li F. P., Rheinwald J. G. 2000; Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447 [View Article][PubMed]
    [Google Scholar]
  14. Diepgen T. L., Mahler V. 2002; The epidemiology of skin cancer. Br J Dermatol 146:Suppl 611–6 [View Article][PubMed]
    [Google Scholar]
  15. Du J., Chen X., Liang X., Zhang G., Xu J., He L., Zhan Q., Feng X. Q., Chien S., Yang C. 2011; Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity. Proc Natl Acad Sci U S A 108:9466–9471 [View Article][PubMed]
    [Google Scholar]
  16. Ezratty E. J., Bertaux C., Marcantonio E. E., Gundersen G. G. 2009; Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733–747 [View Article][PubMed]
    [Google Scholar]
  17. Gardiol D., Kühne C., Glaunsinger B., Lee S. S., Javier R., Banks L. 1999; Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18:5487–5496 [View Article][PubMed]
    [Google Scholar]
  18. Giampieri S., Storey A. 2004; Repair of UV-induced thymine dimers is compromised in cells expressing the E6 protein from human papillomaviruses types 5 and 18. Br J Cancer 90:2203–2209[PubMed]
    [Google Scholar]
  19. Goldenthal K. L., Hedman K., Chen J. W., August J. T., Willingham M. C. 1985; Postfixation detergent treatment for immunofluorescence suppresses localization of some integral membrane proteins. J Histochem Cytochem 33:813–820 [View Article][PubMed]
    [Google Scholar]
  20. Goldfinger L. E., Hopkinson S. B., deHart G. W., Collawn S., Couchman J. R., Jones J. C. 1999; The α3 laminin subunit, α6β4 and α3β1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci 112:2615–2629[PubMed]
    [Google Scholar]
  21. Grose R., Hutter C., Bloch W., Thorey I., Watt F. M., Fässler R., Brakebusch C., Werner S. 2002; A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129:2303–2315[PubMed]
    [Google Scholar]
  22. Gül U., Kiliç A., Gönül M., Cakmak S. K., Bayis S. S. 2007; Clinical aspects of epidermodysplasia verruciformis and review of the literature. Int J Dermatol 46:1069–1072 [View Article][PubMed]
    [Google Scholar]
  23. Hartevelt M. M., Bavinck J. N., Kootte A. M., Vermeer B. J., Vandenbroucke J. P. 1990; Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation 49:506–509 [View Article][PubMed]
    [Google Scholar]
  24. Harwood C. A., Surentheran T., McGregor J. M., Spink P. J., Leigh I. M., Breuer J., Proby C. M. 2000; Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. J Med Virol 61:289–297 [View Article][PubMed]
    [Google Scholar]
  25. Harwood C. A., Surentheran T., Sasieni P., Proby C. M., Bordea C., Leigh I. M., Wojnarowska F., Breuer J., McGregor J. M. 2004; Increased risk of skin cancer associated with the presence of epidermodysplasia verruciformis human papillomavirus types in normal skin. Br J Dermatol 150:949–957 [View Article][PubMed]
    [Google Scholar]
  26. Hertle M. D., Kubler M. D., Leigh I. M., Watt F. M. 1992; Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J Clin Invest 89:1892–1901 [View Article][PubMed]
    [Google Scholar]
  27. Howie H. L., Koop J. I., Weese J., Robinson K., Wipf G., Kim L., Galloway D. A. 2011; Beta-HPV 5 and 8 E6 promote p300 degradation by blocking AKT/p300 association. PLoS Pathog 7:e1002211 [View Article][PubMed]
    [Google Scholar]
  28. Hudson J. B., Bedell M. A., McCance D. J., Laiminis L. A. 1990; Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J Virol 64:519–526[PubMed]
    [Google Scholar]
  29. Huibregtse J. M., Scheffner M., Howley P. M. 1991; A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J 10:4129–4135[PubMed]
    [Google Scholar]
  30. Humphries J. D., Byron A., Humphries M. J. 2006; Integrin ligands at a glance. J Cell Sci 119:3901–3903 [View Article][PubMed]
    [Google Scholar]
  31. Iftner T., Elbel M., Schopp B., Hiller T., Loizou J. I., Caldecott K. W., Stubenrauch F. 2002; Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J 21:4741–4748 [View Article][PubMed]
    [Google Scholar]
  32. Jackson S., Storey A. 2000; E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 19:592–598 [View Article][PubMed]
    [Google Scholar]
  33. Jackson S., Harwood C., Thomas M., Banks L., Storey A. 2000; Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14:3065–3073 [View Article][PubMed]
    [Google Scholar]
  34. Jackson S., Ghali L., Harwood C., Storey A. 2002; Reduced apoptotic levels in squamous but not basal cell carcinomas correlates with detection of cutaneous human papillomavirus. Br J Cancer 87:319–323 [View Article][PubMed]
    [Google Scholar]
  35. Jha S., Vande Pol S., Banerjee N. S., Dutta A. B., Chow L. T., Dutta A. 2010; Destabilization of TIP60 by human papillomavirus E6 results in attenuation of TIP60-dependent transcriptional regulation and apoptotic pathway. Mol Cell 38:700–711 [View Article][PubMed]
    [Google Scholar]
  36. Jones P. H., Watt F. M. 1993; Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724 [View Article][PubMed]
    [Google Scholar]
  37. Jones D. L., Alani R. M., Münger K. 1997; The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2 . Genes Dev 11:2101–2111 [View Article][PubMed]
    [Google Scholar]
  38. Kim L. T., Ishihara S., Lee C. C., Akiyama S. K., Yamada K. M., Grinnell F. 1992; Altered glycosylation and cell surface expression of beta 1 integrin receptors during keratinocyte activation. J Cell Sci 103:743–753[PubMed]
    [Google Scholar]
  39. Kiviat N. B. 1999; Papillomaviruses in non-melanoma skin cancer: epidemiological aspects. Semin Cancer Biol 9:397–403 [View Article][PubMed]
    [Google Scholar]
  40. Kiyono T., Hiraiwa A., Fujita M., Hayashi Y., Akiyama T., Ishibashi M. 1997; Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94:11612–11616 [View Article][PubMed]
    [Google Scholar]
  41. Kühne C., Gardiol D., Guarnaccia C., Amenitsch H., Banks L. 2000; Differential regulation of human papillomavirus E6 by protein kinase A: conditional degradation of human discs large protein by oncogenic E6. Oncogene 19:5884–5891 [View Article][PubMed]
    [Google Scholar]
  42. Larjava H., Salo T., Haapasalmi K., Kramer R. H., Heino J. 1993; Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest 92:1425–1435 [View Article][PubMed]
    [Google Scholar]
  43. Lee S. S., Glaunsinger B., Mantovani F., Banks L., Javier R. T. 2000; Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74:9680–9693 [View Article][PubMed]
    [Google Scholar]
  44. Marcuzzi G. P., Hufbauer M., Kasper H. U., Weissenborn S. J., Smola S., Pfister H. 2009; Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. J Gen Virol 90:2855–2864 [View Article][PubMed]
    [Google Scholar]
  45. McCormack S. J., Brazinski S. E., Moore J. L. Jr, Werness B. A., Goldstein D. J. 1997; Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 15:265–274 [View Article][PubMed]
    [Google Scholar]
  46. Mettouchi A., Meneguzzi G. 2006; Distinct roles of β1 integrins during angiogenesis. Eur J Cell Biol 85:243–247 [View Article][PubMed]
    [Google Scholar]
  47. Michel A., Kopp-Schneider A., Zentgraf H., Gruber A. D., de Villiers E. M. 2006; E6/E7 expression of human papillomavirus type 20 (HPV-20) and HPV-27 influences proliferation and differentiation of the skin in UV-irradiated SKH-hr1 transgenic mice. J Virol 80:11153–11164 [View Article][PubMed]
    [Google Scholar]
  48. Moody C. A., Laimins L. A. 2010; Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560 [View Article][PubMed]
    [Google Scholar]
  49. Nakagawa S., Huibregtse J. M. 2000; Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol Cell Biol 20:8244–8253 [View Article][PubMed]
    [Google Scholar]
  50. Ng T., Shima D., Squire A., Bastiaens P. I., Gschmeissner S., Humphries M. J., Parker P. J. 1999; PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J 18:3909–3923 [View Article][PubMed]
    [Google Scholar]
  51. Nguyen M. L., Nguyen M. M., Lee D., Griep A. E., Lambert P. F. 2003; The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J Virol 77:6957–6964 [View Article][PubMed]
    [Google Scholar]
  52. Nominé Y., Masson M., Charbonnier S., Zanier K., Ristriani T., Deryckère F., Sibler A. P., Desplancq D., Atkinson R. A.other authors 2006; Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell 21:665–678 [View Article][PubMed]
    [Google Scholar]
  53. Orth G. 1986; Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. Ciba Found Symp 120:157–174[PubMed]
    [Google Scholar]
  54. Pfister H. 2003; Chapter 8: Human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 2003:52–56 [View Article][PubMed]
    [Google Scholar]
  55. Pfister H., Ter Schegget J. 1997; Role of HPV in cutaneous premalignant and malignant tumors. Clin Dermatol 15:335–347 [View Article][PubMed]
    [Google Scholar]
  56. Pim D., Thomas M., Javier R., Gardiol D., Banks L. 2000; HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene 19:719–725 [View Article][PubMed]
    [Google Scholar]
  57. Pim D., Thomas M., Banks L. 2002; Chimaeric HPV E6 proteins allow dissection of the proteolytic pathways regulating different E6 cellular target proteins. Oncogene 21:8140–8148 [View Article][PubMed]
    [Google Scholar]
  58. Proby C. M., Harwood C. A., Neale R. E., Green A. C., Euvrard S., Naldi L., Tessari G., Feltkamp M. C., de Koning M. N.other authors 2011; A case–control study of betapapillomavirus infection and cutaneous squamous cell carcinoma in organ transplant recipients. Am J Transplant 11:1498–1508 [View Article][PubMed]
    [Google Scholar]
  59. Rozenblatt-Rosen O., Deo R. C., Padi M., Adelmant G., Calderwood M. A., Rolland T., Grace M., Dricot A., Askenazi M.other authors 2012; Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487:491–495 [View Article][PubMed]
    [Google Scholar]
  60. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136 [View Article][PubMed]
    [Google Scholar]
  61. Schober M., Fuchs E. 2011; Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A 108:10544–10549 [View Article][PubMed]
    [Google Scholar]
  62. Shen X., Li C. C., Aponte A. M., Shen R. F., Billings E. M., Moss J., Vaughan M. 2012; Brefeldin A-inhibited ADP-ribosylation factor activator BIG2 regulates cell migration via integrin β1 cycling and actin remodeling. Proc Natl Acad Sci U S A 109:14464–14469 [View Article][PubMed]
    [Google Scholar]
  63. Sherman L., Schlegel R. 1996; Serum- and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. J Virol 70:3269–3279[PubMed]
    [Google Scholar]
  64. Simmonds M., Storey A. 2008; Identification of the regions of the HPV 5 E6 protein involved in Bak degradation and inhibition of apoptosis. Int J Cancer 123:2260–2266 [View Article][PubMed]
    [Google Scholar]
  65. Simpson C. L., Patel D. M., Green K. J. 2011; Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12:565–580 [View Article][PubMed]
    [Google Scholar]
  66. Sivamani R. K., Garcia M. S., Isseroff R. R. 2007; Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci 12:2849–2868 [View Article][PubMed]
    [Google Scholar]
  67. Slack J. K., Adams R. B., Rovin J. D., Bissonette E. A., Stoker C. E., Parsons J. T. 2001; Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20:1152–1163 [View Article][PubMed]
    [Google Scholar]
  68. Spangle J. M., Munger K. 2013; The HPV16 E6 oncoprotein causes prolonged receptor protein tyrosine kinase signaling and enhances internalization of phosphorylated receptor species. PLoS Pathog 9:e1003237 [View Article][PubMed]
    [Google Scholar]
  69. Stockfleth E., Ulrich C., Meyer T., Arndt R., Christophers E. 2001; Skin diseases following organ transplantation – risk factors and new therapeutic approaches. Transplant Proc 33:1848–1853 [View Article][PubMed]
    [Google Scholar]
  70. Storey A., Thomas M., Kalita A., Harwood C., Gardiol D., Mantovani F., Breuer J., Leigh I. M., Matlashewski G., Banks L. 1998; Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393:229–234 [View Article][PubMed]
    [Google Scholar]
  71. Tan M. J., White E. A., Sowa M. E., Harper J. W., Aster J. C., Howley P. M. 2012; Cutaneous β-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress notch signaling. Proc Natl Acad Sci U S A 109:E1473–E1480 [View Article][PubMed]
    [Google Scholar]
  72. Thomas M., Laura R., Hepner K., Guccione E., Sawyers C., Lasky L., Banks L. 2002; Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21:5088–5096 [View Article][PubMed]
    [Google Scholar]
  73. Thomas M., Massimi P., Navarro C., Borg J. P., Banks L. 2005; The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene 24:6222–6230 [View Article][PubMed]
    [Google Scholar]
  74. Tomlins C., Storey A. 2010; Cutaneous HPV5 E6 causes increased expression of osteoprotegerin and interleukin 6 which contribute to evasion of UV-induced apoptosis. Carcinogenesis 31:2155–2164 [View Article][PubMed]
    [Google Scholar]
  75. Vassilieva E. V., Gerner-Smidt K., Ivanov A. I., Nusrat A. 2008; Lipid rafts mediate internalization of β1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G965–G976 [View Article][PubMed]
    [Google Scholar]
  76. Wade R., Brimer N., Vande Pol S. 2008; Transformation by bovine papillomavirus type 1 E6 requires paxillin. J Virol 82:5962–5966 [View Article][PubMed]
    [Google Scholar]
  77. Wallace N. A., Robinson K., Howie H. L., Galloway D. A. 2012; HPV 5 and 8 E6 abrogate ATR activity resulting in increased persistence of UVB induced DNA damage. PLoS Pathog 8:e1002807 [View Article][PubMed]
    [Google Scholar]
  78. Wang S., Pang T., Gao M., Kang H., Ding W., Sun X., Zhao Y., Zhu W., Tang X.other authors 2013; HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. FEBS Lett 587:690–697 [View Article][PubMed]
    [Google Scholar]
  79. Watson R. A., Thomas M., Banks L., Roberts S. 2003; Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci 116:4925–4934 [View Article][PubMed]
    [Google Scholar]
  80. Weissenborn S., Neale R. E., Waterboer T., Abeni D., Bavinck J. N., Green A. C., Harwood C. A., Euvrard S., Feltkamp M. C.other authors 2012; Beta-papillomavirus DNA loads in hair follicles of immunocompetent people and organ transplant recipients. Med Microbiol Immunol (Berl) 201:117–125 [View Article][PubMed]
    [Google Scholar]
  81. Werness B. A., Levine A. J., Howley P. M. 1990; Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79 [View Article][PubMed]
    [Google Scholar]
  82. Zhang Y., Dasgupta J., Ma R. Z., Banks L., Thomas M., Chen X. S. 2007; Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol 81:3618–3626 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057695-0
Loading
/content/journal/jgv/10.1099/vir.0.057695-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error