1887

Abstract

Human immunodeficiency virus type 2 (HIV-2) carries an accessory protein Vpx that is important for viral replication in natural target cells. In its C-terminal region, there is a highly conserved poly-proline motif (PPM) consisting of seven consecutive prolines, encoded in a poly-pyrimidine tract. We have previously shown that PPM is critical for Vpx expression and viral infectivity. To elucidate the molecular basis underlying this observation, we analysed the expression of Vpx proteins with various PPM mutations by and systems. We found that the number and position of consecutive prolines in PPM are important for Vpx expression, and demonstrated that PPM is essential for efficient Vpx translation. Furthermore, mutational analysis to synonymously disrupt the poly-pyrimidine tract suggested that the context of PPM amino acid sequences is required for efficient translation of Vpx. We similarly analysed HIV-1 and HIV-2 Vpr proteins structurally related to HIV-2 Vpx. Expression level of the two Vpr proteins lacking PPM was shown to be much lower relative to that of Vpx, and not meaningfully enhanced by introduction of PPM at the C terminus. Finally, we examined the Vpx of simian immunodeficiency virus from rhesus monkeys (SIVmac), which also has seven consecutive prolines, for PPM-dependent expression. A multi-substitution mutation in the PPM markedly reduced the expression level of SIVmac Vpx. Taken together, it can be concluded that the notable PPM sequence enhances the expression of Vpx proteins from viruses of the HIV-2/SIVmac group at the translational level.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057364-0
2014-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/179.html?itemId=/content/journal/jgv/10.1099/vir.0.057364-0&mimeType=html&fmt=ahah

References

  1. Accola M. A., Bukovsky A. A., Jones M. S., Göttlinger H. G. 1999; A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). J Virol 73:9992–9999[PubMed]
    [Google Scholar]
  2. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291[PubMed]
    [Google Scholar]
  3. Anraku K., Fukuda R., Takamune N., Misumi S., Okamoto Y., Otsuka M., Fujita M. 2010; Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. Biochemistry 49:5109–5116 [View Article][PubMed]
    [Google Scholar]
  4. Berger G., Durand S., Fargier G., Nguyen X.-N., Cordeil S., Bouaziz S., Muriaux D., Darlix J.-L., Cimarelli A. 2011; APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 7:e1002221 [View Article][PubMed]
    [Google Scholar]
  5. Blanco-Melo D., Venkatesh S., Bieniasz P. D. 2012; Intrinsic cellular defenses against human immunodeficiency viruses. Immunity 37:399–411 [View Article][PubMed]
    [Google Scholar]
  6. Doerfel L. K., Wohlgemuth I., Kothe C., Peske F., Urlaub H., Rodnina M. V. 2013; EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339:85–88 [View Article][PubMed]
    [Google Scholar]
  7. Fujita M., Otsuka M., Miyoshi M., Khamsri B., Nomaguchi M., Adachi A. 2008a; Vpx is critical for reverse transcription of the human immunodeficiency virus type 2 genome in macrophages. J Virol 82:7752–7756 [View Article][PubMed]
    [Google Scholar]
  8. Fujita M., Otsuka M., Nomaguchi M., Adachi A. 2008b; Functional region mapping of HIV-2 Vpx protein. Microbes Infect 10:1387–1392 [View Article][PubMed]
    [Google Scholar]
  9. Fujita M., Otsuka M., Nomaguchi M., Adachi A. 2010; Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Rev Med Virol 20:68–76 [View Article][PubMed]
    [Google Scholar]
  10. Goujon C., Arfi V., Pertel T., Luban J., Lienard J., Rigal D., Darlix J.-L., Cimarelli A. 2008; Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. J Virol 82:12335–12345 [View Article][PubMed]
    [Google Scholar]
  11. Gramberg T., Sunseri N., Landau N. R. 2010; Evidence for an activation domain at the amino terminus of simian immunodeficiency virus Vpx. J Virol 84:1387–1396 [View Article][PubMed]
    [Google Scholar]
  12. Gutierrez E., Shin B.-S., Woolstenhulme C. J., Kim J.-R., Saini P., Buskirk A. R., Dever T. E. 2013; eIF5A promotes translation of polyproline motifs. Mol Cell 51:35–45 [View Article][PubMed]
    [Google Scholar]
  13. Harris R. S., Hultquist J. F., Evans D. T. 2012; The restriction factors of human immunodeficiency virus. J Biol Chem 287:40875–40883 [View Article][PubMed]
    [Google Scholar]
  14. Hrecka K., Hao C., Gierszewska M., Swanson S. K., Kesik-Brodacka M., Srivastava S., Florens L., Washburn M. P., Skowronski J. 2011; Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–661 [View Article][PubMed]
    [Google Scholar]
  15. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with clustal_x . Trends Biochem Sci 23:403–405 [View Article][PubMed]
    [Google Scholar]
  16. Jin L., Zhou Y., Ratner L. 2001; HIV type 2 Vpx interaction with Gag and incorporation into virus-like particles. AIDS Res Hum Retroviruses 17:105–111 [View Article][PubMed]
    [Google Scholar]
  17. Kawamura M., Sakai H., Adachi A. 1994; Human immunodeficiency virus Vpx is required for the early phase of replication in peripheral blood mononuclear cells. Microbiol Immunol 38:871–878[PubMed] [CrossRef]
    [Google Scholar]
  18. Khamsri B., Murao F., Yoshida A., Sakurai A., Uchiyama T., Shirai H., Matsuo Y., Fujita M., Adachi A. 2006; Comparative study on the structure and cytopathogenic activity of HIV Vpr/Vpx proteins. Microbes Infect 8:10–15 [View Article][PubMed]
    [Google Scholar]
  19. Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Ségéral E., Yatim A., Emiliani S., Schwartz O., Benkirane M. 2011; SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657 [View Article][PubMed]
    [Google Scholar]
  20. Lebkowski J. S., Clancy S., Calos M. P. 1985; Simian virus 40 replication in adenovirus-transformed human cells antagonizes gene expression. Nature 317:169–171 [View Article][PubMed]
    [Google Scholar]
  21. Mahnke L. A., Belshan M., Ratner L. 2006; Analysis of HIV-2 Vpx by modeling and insertional mutagenesis. Virology 348:165–174 [View Article][PubMed]
    [Google Scholar]
  22. Malim M. H., Bieniasz P. D. 2012; HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med 2:a006940 [View Article][PubMed]
    [Google Scholar]
  23. Page R. D. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358[PubMed]
    [Google Scholar]
  24. Pancio H. A., Ratner L. 1998; Human immunodeficiency virus type 2 Vpx-Gag interaction. J Virol 72:5271–5275[PubMed]
    [Google Scholar]
  25. Park I.-W., Sodroski J. 1995; Amino acid sequence requirements for the incorporation of the Vpx protein of simian immunodeficiency virus into virion particles. J Acquir Immune Defic Syndr Hum Retrovirol 10:506–510[PubMed] [CrossRef]
    [Google Scholar]
  26. Sharp P. M., Bailes E., Stevenson M., Emerman M., Hahn B. H. 1996; Gene acquisition in HIV and SIV. Nature 383:586–587 [View Article][PubMed]
    [Google Scholar]
  27. Shibata R., Kawamura M., Sakai H., Hayami M., Ishimoto A., Adachi A. 1991; Generation of a chimeric human and simian immunodeficiency virus infectious to monkey peripheral blood mononuclear cells. J Virol 65:3514–3520[PubMed]
    [Google Scholar]
  28. Singh S. P., Lai D., Cartas M., Serio D., Murali R., Kalyanaraman V. S., Srinivasan A. 2000; Epitope-tagging approach to determine the stoichiometry of the structural and nonstructural proteins in the virus particles: amount of Vpr in relation to Gag in HIV-1. Virology 268:364–371 [View Article][PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  30. Ude S., Lassak J., Starosta A. L., Kraxenberger T., Wilson D. N., Jung K. 2013; Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339:82–85 [View Article][PubMed]
    [Google Scholar]
  31. Ueno F., Shiota H., Miyaura M., Yoshida A., Sakurai A., Tatsuki J., Koyama A. H., Akari H., Adachi A., Fujita M. 2003; Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells. Microbes Infect 5:387–395 [View Article][PubMed]
    [Google Scholar]
  32. Zheng Y.-H., Jeang K.-T., Tokunaga K. 2012; Host restriction factors in retroviral infection: promises in virus-host interaction. Retrovirology 9:112 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057364-0
Loading
/content/journal/jgv/10.1099/vir.0.057364-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error