Lack of the host membrane protease FtsH hinders release of the bacteriophage TP712 Free

Abstract

The temperate bacteriophage TP712 was unable to plaque on Δ lacking the membrane protease FtsH and complementation restored the WT phenotype. Absence of did not hinder phage adsorption, phage DNA delivery or activation of the lytic cycle. Thin sections revealed that TP712 virions appeared to be correctly assembled inside the Δ host, but were not released. These virions were infective, demonstrating that a functional host FtsH is required by TP712 to proceed effectively with lysis of the host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057182-0
2013-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2814.html?itemId=/content/journal/jgv/10.1099/vir.0.057182-0&mimeType=html&fmt=ahah

References

  1. Ainsworth S., Zomer A., Mahony J., van Sinderen D. 2013; Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 trigger alternative transcriptional host responses. Appl Environ Microbiol 79:4786–4798 [View Article][PubMed]
    [Google Scholar]
  2. Bove P., Capozzi V., Garofalo C., Rieu A., Spano G., Fiocco D. 2012; Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiol Res 167:187–193 [View Article][PubMed]
    [Google Scholar]
  3. Deveau H., Labrie S. J., Chopin M. C., Moineau S. 2006; Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72:4338–4346 [View Article][PubMed]
    [Google Scholar]
  4. Fallico V., Ross R. P., Fitzgerald G. F., McAuliffe O. 2011; Genetic response to bacteriophage infection in Lactococcus lactis reveals a four-strand approach involving induction of membrane stress proteins, d-alanylation of the cell wall, maintenance of proton motive force, and energy conservation. J Virol 85:12032–12042 [View Article][PubMed]
    [Google Scholar]
  5. Garneau J. E., Moineau S. 2011; Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10:Suppl 1S20 [View Article][PubMed]
    [Google Scholar]
  6. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9[PubMed]
    [Google Scholar]
  7. Ito K., Akiyama Y. 2005; Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231 [View Article][PubMed]
    [Google Scholar]
  8. Katz C., Ron E. Z. 2008; Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 190:7117–7122 [View Article][PubMed]
    [Google Scholar]
  9. Labrie S. J., Samson J. E., Moineau S. 2010; Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327 [View Article][PubMed]
    [Google Scholar]
  10. Leffers G. G. J. Jr, Gottesman S. 1998; Lambda Xis degradation in vivo by Lon and FtsH. J Bacteriol 180:1573–1577[PubMed]
    [Google Scholar]
  11. Lillehaug D. 1997; An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J Appl Microbiol 83:85–90 [View Article][PubMed]
    [Google Scholar]
  12. Madera C., García P., Janzen T., Rodríguez A., Suárez J. E. 2003; Characterisation of technologically proficient wild Lactococcus lactis strains resistant to phage infection. Int J Food Microbiol 86:213–222 [View Article][PubMed]
    [Google Scholar]
  13. Maguin E., Prévost H., Ehrlich S. D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935[PubMed]
    [Google Scholar]
  14. Martínez B., Zomer A. L., Rodríguez A., Kok J., Kuipers O. P. 2007; Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the lactococcal two-component system CesSR. Mol Microbiol 64:473–486 [View Article][PubMed]
    [Google Scholar]
  15. Narberhaus F., Obrist M., Führer F., Langklotz S. 2009; Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 160:652–659 [View Article][PubMed]
    [Google Scholar]
  16. Oliveira H., Melo L. D., Santos S. B., Nóbrega F. L., Ferreira E. C., Cerca N., Azeredo J., Kluskens L. D. 2013; Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 87:4558–4570 [View Article][PubMed]
    [Google Scholar]
  17. Palomino M. M., Sanchez-Rivas C., Ruzal S. M. 2009; High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase. Res Microbiol 160:117–124 [View Article][PubMed]
    [Google Scholar]
  18. Park T., Struck D. K., Deaton J. F., Young R. 2006; Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci U S A 103:19713–19718 [View Article][PubMed]
    [Google Scholar]
  19. Pinto J. P., Kuipers O. P., Marreddy R. K., Poolman B., Kok J. 2011; Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR. PLoS ONE 6:e21873 [View Article][PubMed]
    [Google Scholar]
  20. Shotland Y., Koby S., Teff D., Mansur N., Oren D. A., Tatematsu K., Tomoyasu T., Kessel M., Bukau B.other authors 1997; Proteolysis of the phage λ CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol 24:1303–1310 [View Article][PubMed]
    [Google Scholar]
  21. Soberón N., Martín R., Suárez J. E. 2007; New method for evaluation of genotoxicity, based on the use of real-time PCR and lysogenic Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 73:2815–2819 [View Article][PubMed]
    [Google Scholar]
  22. Sturino J. M., Klaenhammer T. R. 2006; Engineered bacteriophage-defence systems in bioprocessing. Nat Rev Microbiol 4:395–404 [View Article][PubMed]
    [Google Scholar]
  23. Tran T. A., Struck D. K., Young R. 2007; The T4 RI antiholin has an N-terminal signal anchor release domain that targets it for degradation by DegP. J Bacteriol 189:7618–7625 [View Article][PubMed]
    [Google Scholar]
  24. Wegmann U., Overweg K., Jeanson S., Gasson M., Shearman C. 2012; Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712. Microbiology 158:2936–2945 [View Article][PubMed]
    [Google Scholar]
  25. Zellmeier S., Zuber U., Schumann W., Wiegert T. 2003; The absence of FtsH metalloprotease activity causes overexpression of the σW-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis. J Bacteriol 185:973–982 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057182-0
Loading
/content/journal/jgv/10.1099/vir.0.057182-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed