Bovine adenovirus 3 core protein precursor pVII localizes to mitochondria, and modulates ATP synthesis, mitochondrial Ca and mitochondrial membrane potential Free

Abstract

Viruses modulate the functions of mitochondria by translocating viral proteins to the mitochondria. Subcellular fractionation and sensitivity to proteinase K/Triton X-100 treatment of mitochondrial fractions of bovine adenovirus (BAdV)-3-infected/transfected cells suggested that core protein pVII localizes to the mitochondria and contains a functional mitochondrial localization signal. Moreover, mitochondrial localization of BAdV-3 pVII appears to help in the retention of mitochondrial Ca, inducing a significant increase in the levels of ATP and maintaining the mitochondrial membrane potential (MMP) in transfected cells. In contrast, mitochondrial localization of BAdV-3 pVII has no significant effect on the levels of cytoplasmic Ca and reactive oxygen species production in the transfected cells. Consistent with these results, expression of pVII in transfected cells treated with staurosporine decreased significantly the activation of caspase-3. Our results suggested that BAdV-3 pVII localizes to mitochondria, and interferes with apoptosis by inhibiting loss of the MMP and by increasing mitochondrial Ca and ATP production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057059-0
2014-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/442.html?itemId=/content/journal/jgv/10.1099/vir.0.057059-0&mimeType=html&fmt=ahah

References

  1. Agudo-López A., Miguel B. G., Fernández I., Martínez A. M. 2011; Role of protein kinase C and mitochondrial permeability transition pore in the neuroprotective effect of ceramide in ischemia-induced cell death. FEBS Lett 585:99–103 [View Article][PubMed]
    [Google Scholar]
  2. Alesci S., Abu-Asab M., Perera S. M., Tsokos M., Morris J. C., Pacak K. 2007; Mitochondrial localization of human recombinant adenovirus: from evolution to gene therapy. Neuroimmunomodulation 14:221–223 [View Article][PubMed]
    [Google Scholar]
  3. Ascombe F. J. 1948; The validity of comparative experiments. J R Stat Soc [Ser A] 111:181–211 [CrossRef]
    [Google Scholar]
  4. Balaban R. S. 2009; The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim Biophys Acta 1787:1334–1341 [View Article][PubMed]
    [Google Scholar]
  5. Castanier C., Arnoult D. 2011; Mitochondrial localization of viral proteins as a means to subvert host defense. Biochim Biophys Acta 1813:575–583 [View Article][PubMed]
    [Google Scholar]
  6. Chan D. C. 2006; Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252 [View Article][PubMed]
    [Google Scholar]
  7. Chang C. W., Li H. C., Hsu C. F., Chang C. Y., Lo S. Y. 2009; Increased ATP generation in the host cell is required for efficient vaccinia virus production. J Biomed Sci 16:80 [View Article][PubMed]
    [Google Scholar]
  8. Claros M. G., Vincens P. 1996; Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786 [View Article][PubMed]
    [Google Scholar]
  9. Danthi P. 2011; Enter the kill zone: initiation of death signaling during virus entry. Virology 411:316–324 [View Article][PubMed]
    [Google Scholar]
  10. Degenhardt K., Perez D., White E. 2000; Pathways used by adenovirus E1B 19K to inhibit apoptosis. Symp Soc Exp Biol 52:241–251[PubMed]
    [Google Scholar]
  11. Degli Esposti M. 2002; Measuring mitochondrial reactive oxygen species. Methods 26:335–340 [View Article][PubMed]
    [Google Scholar]
  12. Emanuelsson O., Brunak S., von Heijne G., Nielsen H. 2007; Locating proteins in the cell using TarhetP, SignalP and related tools. Nature Protocol 2:953–971 [CrossRef]
    [Google Scholar]
  13. Goldmacher V. S., Bartle L. M., Skaletskaya A., Dionne C. A., Kedersha N. L., Vater C. A., Han J. W., Lutz R. J., Watanabe S. other authors 1999; A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541 [View Article][PubMed]
    [Google Scholar]
  14. Hackenbrock C. R. 1966; Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol 30:269–297 [View Article][PubMed]
    [Google Scholar]
  15. Halestrap A. P. 2009; What is the mitochondrial permeability transition pore?. J Mol Cell Cardiol 46:821–831 [View Article][PubMed]
    [Google Scholar]
  16. Halestrap A. P. 2010; A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860 [View Article][PubMed]
    [Google Scholar]
  17. Harder Z., Zunino R., McBride H. 2004; Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14:340–345[PubMed] [CrossRef]
    [Google Scholar]
  18. Hindley C. E., Lawrence F. J., Matthews D. A. 2007; A role for transportin in the nuclear import of adenovirus core proteins and DNA. Traffic 8:1313–1322 [View Article][PubMed]
    [Google Scholar]
  19. Hollenbeck P. J., Saxton W. M. 2005; The axonal transport of mitochondria. J Cell Sci 118:5411–5419 [View Article][PubMed]
    [Google Scholar]
  20. Huh K. W., Siddiqui A. 2002; Characterization of the mitochondrial association of hepatitis B virus X protein, HBx. Mitochondrion 1:349–359 [View Article][PubMed]
    [Google Scholar]
  21. Karen K. A., Hearing P. 2011; Adenovirus core protein VII protects the viral genome from a DNA damage response at early times after infection. J Virol 85:4135–4142 [View Article][PubMed]
    [Google Scholar]
  22. Kulshreshtha V., Tikoo S. K. 2008; Interaction of bovine adenovirus-3 33K protein with other viral proteins. Virology 381:29–35 [View Article][PubMed]
    [Google Scholar]
  23. Kulshreshtha V., Babiuk L. A., Tikoo S. K. 2004; Role of bovine adenovirus-3 33K protein in viral replication. Virology 323:59–69 [View Article][PubMed]
    [Google Scholar]
  24. Lomonosova E., Subramanian T., Chinnadurai G. 2005; Mitochondrial localization of p53 during adenovirus infection and regulation of its activity by E1B-19K. Oncogene 24:6796–6808 [View Article][PubMed]
    [Google Scholar]
  25. Machida K., McNamara G., Cheng K. T., Huang J., Wang C. H., Comai L., Ou J. H., Lai M. M. 2010; Hepatitis C virus inhibits DNA damage repair through reactive oxygen and nitrogen species and by interfering with the ATM-NBS1/Mre11/Rad50 DNA repair pathway in monocytes and hepatocytes. J Immunol 185:6985–6998 [View Article][PubMed]
    [Google Scholar]
  26. Mannella C. A. 2006; Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548 [View Article][PubMed]
    [Google Scholar]
  27. Matthews D. A., Russell W. C. 1998; Adenovirus core protein V interacts with p32 – a protein which is associated with both the mitochondria and the nucleus. J Gen Virol 79:1677–1685[PubMed]
    [Google Scholar]
  28. Maynard N. D., Gutschow M. V., Birch E. W., Covert M. W. 2010; The virus as metabolic engineer. Biotechnol J 5:686–694 [View Article][PubMed]
    [Google Scholar]
  29. McGuire K. A., Barlan A. U., Griffin T. M., Wiethoff C. M. 2011; Adenovirus type 5 rupture of lysosomes leads to cathepsin B-dependent mitochondrial stress and production of reactive oxygen species. J Virol 85:10806–10813 [View Article][PubMed]
    [Google Scholar]
  30. Monné M., Robinson A. J., Boes C., Harbour M. E., Fearnley I. M., Kunji E. R. 2007; The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP. J Virol 81:3181–3186 [View Article][PubMed]
    [Google Scholar]
  31. Nakai K., Horton P. 1999; psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35 [View Article][PubMed]
    [Google Scholar]
  32. Ohta A., Nishiyama Y. 2011; Mitochondria and viruses. Mitochondrion 11:1–12 [View Article][PubMed]
    [Google Scholar]
  33. Ong S. B., Hausenloy D. J. 2010; Mitochondrial morphology and cardiovascular disease. Cardiovasc Res 88:16–29 [View Article][PubMed]
    [Google Scholar]
  34. Paterson C. P. 2010 Molecular characterization of 52K protein of bovine adenovirus type 3 PhD thesis University of Saskatchewan; Saskatoon, Canada:
    [Google Scholar]
  35. Rapaport D. 2003; Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep 4:948–952 [View Article][PubMed]
    [Google Scholar]
  36. Rasmussen U. B., Benchaibi M., Meyer V., Schlesinger Y., Schughart K. 1999; Novel human gene transfer vectors: evaluation of wild-type and recombinant animal adenoviruses in human-derived cells. Hum Gene Ther 10:2587–2599 [View Article][PubMed]
    [Google Scholar]
  37. Reddy P. S., Idamakanti N., Zakhartchouk A. N., Baxi M. K., Lee J. B., Pyne C., Babiuk L. A., Tikoo S. K. 1998; Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3. J Virol 72:1394–1402[PubMed]
    [Google Scholar]
  38. Reddy P. S., Chen Y., Idamakanti N., Pyne C., Babiuk L. A., Tikoo S. K. 1999; Characterization of early region 1 and pIX of bovine adenovirus-3. Virology 253:299–308 [View Article][PubMed]
    [Google Scholar]
  39. Rost B., Yachdav G., Liu J. 2004; The PredictProtein server. Nucleic Acids Res 32:Web Server issueW321–W326 [View Article][PubMed]
    [Google Scholar]
  40. Sardanelli A. M., Signorile A., Nuzzi R., Rasmo D. D., Technikova-Dobrova Z., Drahota Z., Occhiello A., Pica A., Papa S. 2006; Occurrence of A-kinase anchor protein and associated cAMP-dependent protein kinase in the inner compartment of mammalian mitochondria. FEBS Lett 580:5690–5696 [View Article][PubMed]
    [Google Scholar]
  41. Shatkay H., Höglund A., Brady S., Blum T., Dönnes P., Kohlbacher O. 2007; SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 23:1410–1417 [View Article][PubMed]
    [Google Scholar]
  42. Su Y. C., Hong J. R. 2010; Betanodavirus B2 causes ATP depletion-induced cell death via mitochondrial targeting and complex II inhibition in vitro and in vivo . J Biol Chem 285:39801–39810 [View Article][PubMed]
    [Google Scholar]
  43. Tollefson A. E., Ryerse J. S., Scaria A., Hermiston T. W., Wold W. S. 1996; The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 220:152–162 [View Article][PubMed]
    [Google Scholar]
  44. Wang H. W., Sharp T. V., Koumi A., Koentges G., Boshoff C. 2002; Characterization of an anti-apoptotic glycoprotein encoded by Kaposi’s sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J 21:2602–2615 [View Article][PubMed]
    [Google Scholar]
  45. Wasilenko S. T., Stewart T. L., Meyers A. F. A., Barry M. 2003; Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci U S A 100:14345–14350 [View Article][PubMed]
    [Google Scholar]
  46. Wodrich H., Cassany A., D’Angelo M. A., Guan T., Nemerow G., Gerace L. 2006; Adenovirus core protein pVII is translocated into the nucleus by multiple import receptor pathways. J Virol 80:9608–9618 [View Article][PubMed]
    [Google Scholar]
  47. Zakhartchouk A. N., Pyne C., Mutwiri G. K., Papp Z., Baca-Estrada M. E., Griebel P., Babiuk L. A., Tikoo S. K. 1999; Mucosal immunization of calves with recombinant bovine adenovirus-3: induction of protective immunity to bovine herpesvirus-1. J Gen Virol 80:1263–1269[PubMed]
    [Google Scholar]
  48. Zhang W., Arcos R. 2005; Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery. Virology 334:194–202 [View Article][PubMed]
    [Google Scholar]
  49. Zhou Y., Frey T. K., Yang J. J. 2009; Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 46:1–17 [View Article][PubMed]
    [Google Scholar]
  50. Zou H., Henzel W. J., Liu X., Lutschg A., Wang X. 1997; Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057059-0
Loading
/content/journal/jgv/10.1099/vir.0.057059-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed