1887

Abstract

The early region 1A (E1A) of human adenovirus types 2 and 5 is differentially spliced to yield five distinct mRNAs that encode different proteins. The smallest E1A RNA transcript encodes a 55 residue (55R) protein that shares only 28 amino acid residues with the other E1A proteins. Even though it is the most abundant E1A transcript at late times post-infection, little is known about the functions of this E1A isoform. In this study, we show that the E1A 55R protein interacts with, and modulates the activity of the unliganded thyroid hormone receptor (TR). We demonstrate that E1A 55R contains a signature motif known as the CoRNR box that confers interaction with the unliganded TR; this motif was originally identified in cellular corepressors. Using a system reconstituted in the yeast , which lack endogenous TR and TR coregulators, we show that E1A 55R nonetheless differs from cellular corepressors as it functions as a strong co-activator of TR-dependent transcription and that it possesses an intrinsic transcriptional activation domain. These data indicate that the E1A 55R protein functions as a transcriptional regulator.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.056838-0
2014-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/142.html?itemId=/content/journal/jgv/10.1099/vir.0.056838-0&mimeType=html&fmt=ahah

References

  1. Adams A., Gottschling D. E., Kaiser C. A., Stearns T.. ( 1998; ). Methods in Yeast Genetics. Plainview, N.Y.:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  2. Ahuja D., Sáenz-Robles M. T., Pipas J. M.. ( 2005; ). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. . Oncogene 24:, 7729–7745. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anafi M., Yang Y. F., Barlev N. A., Govindan M. V., Berger S. L., Butt T. R., Walfish P. G.. ( 2000; ). GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. . Mol Endocrinol 14:, 718–732. [CrossRef] [PubMed]
    [Google Scholar]
  4. Avvakumov N., Kajon A. E., Hoeben R. C., Mymryk J. S.. ( 2004; ). Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. . Virology 329:, 477–492. [CrossRef] [PubMed]
    [Google Scholar]
  5. Berk A. J.. ( 2005; ). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. . Oncogene 24:, 7673–7685. [CrossRef] [PubMed]
    [Google Scholar]
  6. Berk A. J., Sharp P. A.. ( 1978; ). Structure of the adenovirus 2 early mRNAs. . Cell 14:, 695–711. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen J. D., Evans R. M.. ( 1995; ). A transcriptional co-repressor that interacts with nuclear hormone receptors. . Nature 377:, 454–457. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cheng S. Y.. ( 2000; ). Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. . Rev Endocr Metab Disord 1:, 9–18. [CrossRef] [PubMed]
    [Google Scholar]
  9. Desai-Yajnik V., Hadzic E., Modlinger P., Malhotra S., Gechlik G., Samuels H. H.. ( 1995; ). Interactions of thyroid hormone receptor with the human immunodeficiency virus type 1 (HIV-1) long terminal repeat and the HIV-1 Tat transactivator. . J Virol 69:, 5103–5112.[PubMed]
    [Google Scholar]
  10. Desvergne B., Favez T.. ( 1997; ). The major transcription initiation site of the SV40 late promoter is a potent thyroid hormone response element. . Nucleic Acids Res 25:, 1774–1781. [CrossRef] [PubMed]
    [Google Scholar]
  11. Frisch S. M., Mymryk J. S.. ( 2002; ). Adenovirus-5 E1A: paradox and paradigm. . Nat Rev Mol Cell Biol 3:, 441–452. [CrossRef] [PubMed]
    [Google Scholar]
  12. Glass C. K., Rosenfeld M. G.. ( 2000; ). The coregulator exchange in transcriptional functions of nuclear receptors. . Genes Dev 14:, 121–141.[PubMed]
    [Google Scholar]
  13. Hörlein A. J., Näär A. M., Heinzel T., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Söderström M.. & other authors ( 1995; ). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. . Nature 377:, 397–404. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hu X., Lazar M. A.. ( 1999; ). The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. . Nature 402:, 93–96. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hu X., Li Y., Lazar M. A.. ( 2001; ). Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. . Mol Cell Biol 21:, 1747–1758. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M.. & other authors ( 1995; ). The nuclear receptor superfamily: the second decade. . Cell 83:, 835–839. [CrossRef] [PubMed]
    [Google Scholar]
  17. Marimuthu A., Feng W., Tagami T., Nguyen H., Jameson J. L., Fletterick R. J., Baxter J. D., West B. L.. ( 2002; ). TR surfaces and conformations required to bind nuclear receptor corepressor. . Mol Endocrinol 16:, 271–286. [CrossRef] [PubMed]
    [Google Scholar]
  18. Martens J. A., Winston F.. ( 2003; ). Recent advances in understanding chromatin remodeling by Swi/Snf complexes. . Curr Opin Genet Dev 13:, 136–142. [CrossRef] [PubMed]
    [Google Scholar]
  19. McEwan I. J.. ( 2009; ). Nuclear receptors: one big family. . Methods Mol Biol 505:, 3–18. [CrossRef] [PubMed]
    [Google Scholar]
  20. Meng X., Yang Y. F., Cao X., Govindan M. V., Shuen M., Hollenberg A. N., Mymryk J. S., Walfish P. G.. ( 2003; ). Cellular context of coregulator and adaptor proteins regulates human adenovirus 5 early region 1A-dependent gene activation by the thyroid hormone receptor. . Mol Endocrinol 17:, 1095–1105. [CrossRef] [PubMed]
    [Google Scholar]
  21. Meng X., Webb P., Yang Y. F., Shuen M., Yousef A. F., Baxter J. D., Mymryk J. S., Walfish P. G.. ( 2005; ). E1A and a nuclear receptor corepressor splice variant (N-CoRI) are thyroid hormone receptor coactivators that bind in the corepressor mode. . Proc Natl Acad Sci U S A 102:, 6267–6272. [CrossRef] [PubMed]
    [Google Scholar]
  22. Miller M. S., Mymryk J. S.. ( 2011; ). An unhealthy relationship: viral manipulation of the nuclear receptor superfamily. . Future Microbiol 6:, 999–1019. [CrossRef] [PubMed]
    [Google Scholar]
  23. Miller M. S., Pelka P., Fonseca G. J., Cohen M. J., Kelly J. N., Barr S. D., Grand R. J., Turnell A. S., Whyte P., Mymryk J. S.. ( 2012; ). Characterization of the 55-residue protein encoded by the 9S E1A mRNA of species C adenovirus. . J Virol 86:, 4222–4233. [CrossRef] [PubMed]
    [Google Scholar]
  24. Nagy L., Kao H. Y., Love J. D., Li C., Banayo E., Gooch J. T., Krishna V., Chatterjee K., Evans R. M., Schwabe J. W.. ( 1999; ). Mechanism of corepressor binding and release from nuclear hormone receptors. . Genes Dev 13:, 3209–3216. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nevins J. R., Ginsberg H. S., Blanchard J. M., Wilson M. C., Darnell J. E. Jr. ( 1979; ). Regulation of the primary expression of the early adenovirus transcription units. . J Virol 32:, 727–733.[PubMed]
    [Google Scholar]
  26. Park H. Y., Davidson D., Raaka B. M., Samuels H. H.. ( 1993; ). The herpes simplex virus thymidine kinase gene promoter contains a novel thyroid hormone response element. . Mol Endocrinol 7:, 319–330. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pelka P., Ablack J. N., Fonseca G. J., Yousef A. F., Mymryk J. S.. ( 2008; ). Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. . J Virol 82:, 7252–7263. [CrossRef] [PubMed]
    [Google Scholar]
  28. Perissi V., Staszewski L. M., McInerney E. M., Kurokawa R., Krones A., Rose D. W., Lambert M. H., Milburn M. V., Glass C. K., Rosenfeld M. G.. ( 1999; ). Molecular determinants of nuclear receptor–corepressor interaction. . Genes Dev 13:, 3198–3208. [CrossRef] [PubMed]
    [Google Scholar]
  29. Perricaudet M., Akusjärvi G., Virtanen A., Pettersson U.. ( 1979; ). Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. . Nature 281:, 694–696. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sande S., Privalsky M. L.. ( 1996; ). Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. . Mol Endocrinol 10:, 813–825. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sato Y., Ding A., Heimeier R. A., Yousef A. F., Mymryk J. S., Walfish P. G., Shi Y. B.. ( 2009; ). The adenoviral E1A protein displaces corepressors and relieves gene repression by unliganded thyroid hormone receptors in vivo. . Cell Res 19:, 783–792. [CrossRef] [PubMed]
    [Google Scholar]
  32. Shuen M., Avvakumov N., Walfish P. G., Brandl C. J., Mymryk J. S.. ( 2002; ). The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains. . J Biol Chem 277:, 30844–30851. [CrossRef] [PubMed]
    [Google Scholar]
  33. Stephens C., Harlow E.. ( 1987; ). Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kD and 35 kD proteins. . EMBO J 6:, 2027–2035.[PubMed]
    [Google Scholar]
  34. Timmers H. T., Tora L.. ( 2005; ). SAGA unveiled. . Trends Biochem Sci 30:, 7–10. [CrossRef] [PubMed]
    [Google Scholar]
  35. Walfish P. G., Yoganathan T., Yang Y. F., Hong H., Butt T. R., Stallcup M. R.. ( 1997; ). Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. . Proc Natl Acad Sci U S A 94:, 3697–3702. [CrossRef] [PubMed]
    [Google Scholar]
  36. Webb P., Anderson C. M., Valentine C., Nguyen P., Marimuthu A., West B. L., Baxter J. D., Kushner P. J.. ( 2000; ). The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). . Mol Endocrinol 14:, 1976–1985. [CrossRef] [PubMed]
    [Google Scholar]
  37. Xu H. E., Stanley T. B., Montana V. G., Lambert M. H., Shearer B. G., Cobb J. E., McKee D. D., Galardi C. M., Plunket K. D.. & other authors ( 2002; ). Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. . Nature 415:, 813–817. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yen P. M.. ( 2001; ). Physiological and molecular basis of thyroid hormone action. . Physiol Rev 81:, 1097–1142.[PubMed]
    [Google Scholar]
  39. Yousef A. F., Xu G. W., Mendez M., Brandl C. J., Mymryk J. S.. ( 2008; ). Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae . . Int J Cancer 122:, 942–946. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yousef A. F., Brandl C. J., Mymryk J. S.. ( 2009; ). Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae . . BMC Mol Biol 10:, 32. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yousef A. F., Fonseca G. J., Cohen M. J., Mymryk J. S.. ( 2012; ). The C-terminal region of E1A: a molecular tool for cellular cartography. . Biochem Cell Biol 90:, 153–163. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zuo F., Kraus R. J., Gulick T., Moore D. D., Mertz J. E.. ( 1997; ). Direct modulation of simian virus 40 late gene expression by thyroid hormone and its receptor. . J Virol 71:, 427–436.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.056838-0
Loading
/content/journal/jgv/10.1099/vir.0.056838-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error