1887

Abstract

Crimean–Congo haemorrhagic fever virus (CCHFV) is a tick-borne virus with high pathogenicity to humans. CCHFV contains a three-segment [small (S), medium (M) and large (L)] genome and is prone to reassortment. Investigation of identified reassortment events can yield insight into the evolutionary history of the virus, while migration events reflect its geographical dissemination. While many studies have already considered these issues, they have investigated small numbers of isolates and lack statistical support for their findings. Here, we consider a larger set of 30 full genomes to investigate reassortment using recombination methods, as well as two sets of partial S segments comprising 393 isolates, reflecting a broader geographical range, to investigate migration events. Phylogenetic analysis revealed that the S segment showed strong geographical subdivision, but this was less apparent in the M and L segments. A total of 16 reassortment events with 22 isolates were identified with strong statistical support. Migration analysis on the partial S segments identified both long- and short-range migration events that spanned the entire geographical region in which the CCHFV has been isolated, reflecting the complex processes associated with the dissemination of the virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.056374-0
2013-11-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2536.html?itemId=/content/journal/jgv/10.1099/vir.0.056374-0&mimeType=html&fmt=ahah

References

  1. Altamura L. A. , Stubbs J. , Schmaljohn C. S. , Doms R. W. . ( 2007; ). Crimean-Congo hemorrhagic fever virus encodes an NSM protein. . Am J Trop Med Hyg 77:, 175.
    [Google Scholar]
  2. Anagnostou V. , Papa A. . ( 2009; ). Evolution of Crimean-Congo Hemorrhagic Fever virus. . Infect Genet Evol 9:, 948–954. [CrossRef] [PubMed]
    [Google Scholar]
  3. Andersson I. . ( 2008; ). Crimean-Congo Hemorrhagic Fever Virus: interferon-induced antiviral mechanisms and immune evasion strategies. PhD thesis, Karolinska Institutet, Stockholm, Sweden. .
    [Google Scholar]
  4. Avšič-Županc T. . ( 2007; ). Epidemiology of Crimean-Congo hemorrhagic fever in the Balkans. . In Crimean-Congo Hemorrhagic Fever: A Global Perspective, pp. 75–88. Edited by Ergonul O. , Whitehouse C. A. . . Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  5. Bruen T. C. , Philippe H. , Bryant D. . ( 2006; ). A simple and robust statistical test for detecting the presence of recombination. . Genetics 172:, 2665–2681. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burt F. J. , Paweska J. T. , Ashkettle B. , Swanepoel R. . ( 2009; ). Genetic relationship in southern African Crimean-Congo haemorrhagic fever virus isolates: evidence for occurrence of reassortment. . Epidemiol Infect 137:, 1302–1308. [CrossRef] [PubMed]
    [Google Scholar]
  7. Carroll S. A. , Bird B. H. , Rollin P. E. , Nichol S. T. . ( 2010; ). Ancient common ancestry of Crimean-Congo hemorrhagic fever virus. . Mol Phylogenet Evol 55:, 1103–1110. [CrossRef] [PubMed]
    [Google Scholar]
  8. CDPC-mail ( 1998; ). Crimean-Congo hemorrhagic fever, imported – UK (02). . 19980221.0328. www.promedmail.org, accessed 19 February 1998.
  9. Cevik M. A. , Erbay A. , Bodur H. , Gülderen E. , Baştuğ A. , Kubar A. , Akinci E. . ( 2008; ). Clinical and laboratory features of Crimean-Congo hemorrhagic fever: predictors of fatality. . Int J Infect Dis 12:, 374–379. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chamberlain J. , Cook N. , Lloyd G. , Mioulet V. , Tolley H. , Hewson R. . ( 2005; ). Co-evolutionary patterns of variation in small and large RNA segments of Crimean-Congo hemorrhagic fever virus. . J Gen Virol 86:, 3337–3341. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen S. . ( 2013; ). Molecular evolution of Crimean-Congo hemorrhagic fever virus based on complete genomes. . J Gen Virol 94:, 843–850. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chisholm K. , Dueger E. , Fahmy N. T. , Samaha H. A. , Zayed A. , Abdel-Dayem M. , Villinski J. T. . ( 2012; ). Crimean-Congo hemorrhagic fever virus in ticks from imported livestock, Egypt. . Emerg Infect Dis 18:, 181–182. [CrossRef] [PubMed]
    [Google Scholar]
  13. Deyde V. M. , Khristova M. L. , Rollin P. E. , Ksiazek T. G. , Nichol S. T. . ( 2006; ). Crimean-Congo hemorrhagic fever virus genomics and global diversity. . J Virol 80:, 8834–8842. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dokter A. M. , Liechti F. , Stark H. , Delobbe L. , Tabary P. , Holleman I. . ( 2011; ). Bird migration flight altitudes studied by a network of operational weather radars. . J R Soc Interface 8:, 30–43. [CrossRef] [PubMed]
    [Google Scholar]
  15. Drummond A. J. , Suchard M. A. , Xie D. , Rambaut A. . ( 2012; ). Bayesian phylogenetics with BEAUti and the BEAST 1.7. . Mol Biol Evol 29:, 1969–1973. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ducatez M. F. , Olinger C. M. , Owoade A. A. , Tarnagda Z. , Tahita M. C. , Sow A. , De Landtsheer S. , Ammerlaan W. , Ouedraogo J. B. . & other authors ( 2007; ). Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. . J Gen Virol 88:, 2297–2306. [CrossRef] [PubMed]
    [Google Scholar]
  17. Duh D. , Nichol S. T. , Khristova M. L. , Saksida A. , Hafner-Bratkovic I. , Petrovec M. , Dedushaj I. , Ahmeti S. , Avsic-Zupanc T. . ( 2008; ). The complete genome sequence of a Crimean-Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. . Virol J 5:, 7. [CrossRef] [PubMed]
    [Google Scholar]
  18. Edgar R. C. . ( 2004a; ). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5:, 113. [CrossRef] [PubMed]
    [Google Scholar]
  19. Edgar R. C. . ( 2004b; ). MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  20. Elliott R. M. . ( 1990; ). Molecular biology of the Bunyaviridae. . J Gen Virol 71:, 501–522. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ergönül O. . ( 2006; ). Crimean-Congo haemorrhagic fever. . Lancet Infect Dis 6:, 203–214. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ergonul O. . ( 2007; ). Clinical and pathologic features of Crimean-Congo hemorrhagic fever. . In Crimean-Congo Hemorrhagic Fever: A Global Perspective, pp. 207–220. Edited by Ergonul O. , Whitehouse C. A. . . Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  23. Ergonul O. , Whitehouse C. A. . ( 2007; ). Crimean-Congo Hemorrhagic Fever: A Global Perspective. Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  24. Feare C. . ( 2005; ). Conservation implications of Avian Influenza. . RSPB Research Report no. 14. Sandy: RSPB.
  25. Greenbaum B. D. , Li O. T. W. , Poon L. L. M. , Levine A. J. , Rabadan R. . ( 2012; ). Viral reassortment as an information exchange between viral segments. . Proc Natl Acad Sci U S A 109:, 3341–3346. [CrossRef] [PubMed]
    [Google Scholar]
  26. Guo Z. , Tao X. , Yin C. , Han N. , Yu J. , Li H. , Liu H. , Fang W. , Adams J. . & other authors ( 2013; ). National borders effectively halt the spread of rabies: the current rabies epidemic in China is dislocated from cases in neighboring countries. . PLoS Negl Trop Dis 7:, e2039. [CrossRef] [PubMed]
    [Google Scholar]
  27. Han N. , Rayner S. . ( 2011; ). Epidemiology and mutational analysis of global strains of Crimean-Congo haemorrhagic fever virus. . Virol Sin 26:, 229–244. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hewson R. , Chamberlain J. , Mioulet V. , Lloyd G. , Jamil B. , Hasan R. , Gmyl A. , Gmyl L. , Smirnova S. E. . & other authors ( 2004a; ). Crimean-Congo haemorrhagic fever virus: sequence analysis of the small RNA segments from a collection of viruses world wide. . Virus Res 102:, 185–189. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hewson R. , Gmyl A. , Gmyl L. , Smirnova S. E. , Karganova G. , Jamil B. , Hasan R. , Chamberlain J. , Clegg C. . ( 2004b; ). Evidence of segment reassortment in Crimean-Congo haemorrhagic fever virus. . J Gen Virol 85:, 3059–3070. [CrossRef] [PubMed]
    [Google Scholar]
  30. Huson D. H. . ( 1998; ). SplitsTree: analyzing and visualizing evolutionary data. . Bioinformatics 14:, 68–73. [CrossRef] [PubMed]
    [Google Scholar]
  31. Krzywinski M. , Schein J. , Birol I. , Connors J. , Gascoyne R. , Horsman D. , Jones S. J. , Marra M. A. . ( 2009; ). Circos: an information aesthetic for comparative genomics. . Genome Res 19:, 1639–1645. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lewis N. S. , Javakhishvili Z. , Russell C. A. , Machablishvili A. , Lexmond P. , Verhagen J. H. , Vuong O. , Onashvili T. , Donduashvili M. . & other authors ( 2013; ). Avian influenza virus surveillance in wild birds in Georgia: 2009-2011. . PLoS ONE 8:, e58534. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lindeborg M. , Barboutis C. , Ehrenborg C. , Fransson T. , Jaenson T. G. , Lindgren P. E. , Lundkvist A. , Nyström F. , Salaneck E. . & other authors ( 2012; ). Migratory birds, ticks, and Crimean-Congo hemorrhagic fever virus. . Emerg Infect Dis 18:, 2095–2097. [CrossRef] [PubMed]
    [Google Scholar]
  34. Macken C. A. , Webby R. J. , Bruno W. J. . ( 2006; ). Genotype turnover by reassortment of replication complex genes from avian influenza A virus. . J Gen Virol 87:, 2803–2815. [CrossRef] [PubMed]
    [Google Scholar]
  35. Mardani M. , Keshtkar-Jahromi M. . ( 2007; ). Crimean-Congo hemorrhagic fever. . Arch Iran Med 10:, 204–214.[PubMed]
    [Google Scholar]
  36. Martin D. P. , Lemey P. , Lott M. , Moulton V. , Posada D. , Lefeuvre P. . ( 2010; ). RDP3: a flexible and fast computer program for analyzing recombination. . Bioinformatics 26:, 2462–2463. [CrossRef] [PubMed]
    [Google Scholar]
  37. Mild M. , Simon M. , Albert J. , Mirazimi A. . ( 2010; ). Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. . J Gen Virol 91:, 199–207. [CrossRef] [PubMed]
    [Google Scholar]
  38. Nagarajan N. , Kingsford C. . ( 2011; ). GiRaF: robust, computational identification of influenza reassortments via graph mining. . Nucleic Acids Res 39:, e34. [CrossRef] [PubMed]
    [Google Scholar]
  39. Palomar A. M. , Portillo A. , Santibáñez P. , Mazuelas D. , Arizaga J. , Crespo A. , Gutiérrez O. , Cuadrado J. F. , Oteo J. A. . ( 2013; ). Crimean-Congo hemorrhagic fever virus in ticks from migratory birds, Morocco. . Emerg Infect Dis 19:, 260–263. [CrossRef] [PubMed]
    [Google Scholar]
  40. Posada D. . ( 2008; ). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef] [PubMed]
    [Google Scholar]
  41. ProMED-mail ( 2002a; ). Crimean-Congo hemorrhagic fever – Iran (03). . 20020621.4564. www.promedmail.org, accessed 21 June 2002.
  42. ProMED-mail ( 2002b; ). Crimean-Congo hemorrhagic fever – Iran. . 20020525.4320. www.promedmail.org, accessed 24 May 2002.
  43. ProMED-mail ( 2013; ). Crimean-Congo hemorrhagic fever – South Africa (02): background. . 20130116.1501273. www.promedmail.org, accessed 16 January 2013.
  44. Sanchez A. J. , Vincent M. J. , Nichol S. T. . ( 2002; ). Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. . J Virol 76:, 7263–7275. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sanchez A. J. , Vincent M. J. , Erickson B. R. , Nichol S. T. . ( 2006; ). Crimean-congo hemorrhagic fever virus glycoprotein precursor is cleaved by Furin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. . J Virol 80:, 514–525. [CrossRef] [PubMed]
    [Google Scholar]
  46. Sapir N. , Horvitz N. , Wikelski M. , Avissar R. , Mahrer Y. , Nathan R. . ( 2011; ). Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode. . Proc Biol Sci 278:, 3380–3386. [CrossRef] [PubMed]
    [Google Scholar]
  47. Schwarz T. F. , Nsanze H. , Ameen A. M. . ( 1997; ). Clinical features of Crimean-Congo haemorrhagic fever in the United Arab Emirates. . Infection 25:, 364–367. [CrossRef] [PubMed]
    [Google Scholar]
  48. Simmons G. , Wool-Lewis R. J. , Baribaud F. , Netter R. C. , Bates P. . ( 2002; ). Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. . J Virol 76:, 2518–2528. [CrossRef] [PubMed]
    [Google Scholar]
  49. Smith R. P. Jr , Rand P. W. , Lacombe E. H. , Morris S. R. , Holmes D. W. , Caporale D. A. . ( 1996; ). Role of bird migration in the long-distance dispersal of Ixodes dammini, the vector of Lyme disease. . J Infect Dis 174:, 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  50. Swanepoel R. , Leman P. A. , Burt F. J. , Jardine J. , Verwoerd D. J. , Capua I. , Brückner G. K. , Burger W. P. . ( 1998; ). Experimental infection of ostriches with Crimean-Congo haemorrhagic fever virus. . Epidemiol Infect 121:, 427–432. [CrossRef] [PubMed]
    [Google Scholar]
  51. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tarantola A. . ( 2004; ). Crimean-Congo hemorrhagic fever – France ex. www.promedmail.org, accessed 24 November 2004.
    [Google Scholar]
  53. Wallace R. G. , Hodac H. , Lathrop R. H. , Fitch W. M. . ( 2007; ). A statistical phylogeography of influenza A H5N1. . Proc Natl Acad Sci U S A 104:, 4473–4478. [CrossRef] [PubMed]
    [Google Scholar]
  54. Whitehouse C. A. . ( 2004; ). Crimean-Congo hemorrhagic fever. . Antiviral Res 64:, 145–160.[PubMed] [CrossRef]
    [Google Scholar]
  55. WHO ( 2008; ). Geographic distribution of Crimean-Congo hemorrhagic fever. . http://www.who.int/csr/disease/crimean_congoHF/Global_CCHFRisk_20080918.png.
  56. Xiao X. , Feng Y. , Zhu Z. , Dimitrov D. S. . ( 2011; ). Identification of a putative Crimean-Congo hemorrhagic fever virus entry factor. . Biochem Biophys Res Commun 411:, 253–258. [CrossRef] [PubMed]
    [Google Scholar]
  57. Yen Y. C. , Kong L. X. , Lee L. , Zhang Y. Q. , Li F. , Cai B. J. , Gao S. Y. . ( 1985; ). Characteristics of Crimean-Congo hemorrhagic fever virus (Xinjiang strain) in China. . Am J Trop Med Hyg 34:, 1179–1182.[PubMed]
    [Google Scholar]
  58. Zdanov V. M. . ( 1966; ). Haemorrhagic fevers in the USSR. . Bull World Health Organ 35:, 87–89.[PubMed]
    [Google Scholar]
  59. Zhang X. S. , De Angelis D. , White P. J. , Charlett A. , Pebody R. G. , McCauley J. . ( 2013; ). Co-circulation of influenza A virus strains and emergence of pandemic via reassortment: the role of cross-immunity. . Epidemics 5:, 20–33. [CrossRef] [PubMed]
    [Google Scholar]
  60. Zhou Z. R. , Wang M. L. , Deng F. , Li T. X. , Hu Z. H. , Wang H. L. . ( 2011; ). Production of CCHF virus-like particle by a baculovirus-insect cell expression system. . Virol Sin 26:, 338–346. [CrossRef] [PubMed]
    [Google Scholar]
  61. Ziovas S. , Grigoriadou M. . ( 2008; ). CRICOS: a web-based system for creating interconnected communities. . In Proceedings of the 2008 International Symposium on Applications and the Internet: SAINT 2008, pp. 313–316. Washington, DC:: IEEE Computer Society;.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.056374-0
Loading
/content/journal/jgv/10.1099/vir.0.056374-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error