Expression of the herpes simplex virus type 1 latency-associated transcripts does not influence latency establishment of virus mutants deficient for neuronal replication Open Access

Abstract

Herpes simplex virus type 1 establishes latency within neurons of the trigeminal ganglion. During latency, viral gene expression is largely restricted to the latency-associated transcripts (LATs), which, whilst not essential for any aspect of latency, function to suppress lytic gene expression and enhance the survival of virus-infected neurons. The latent cell population comprises primary-order neurons infected directly from peripheral tissues and cells infected following further virus spread within the ganglion. In order to assess the role of LAT expression on latency establishment within first-order neurons, we infected ROSA26R reporter mice with Cre recombinase-expressing recombinant viruses harbouring deletion of the thymidine kinase lytic gene and/or the core LAT promoter. We found that LAT expression did not impact on latency establishment in viruses unable to replicate in neurons, and under these conditions, it was not required for the survival of neurons between 3 and 31 days post-infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.056176-0
2013-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2489.html?itemId=/content/journal/jgv/10.1099/vir.0.056176-0&mimeType=html&fmt=ahah

References

  1. Branco F. J., Fraser N. W. 2005; Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol 79:9019–9025 [View Article][PubMed]
    [Google Scholar]
  2. Chen S. H., Kramer M. F., Schaffer P. A., Coen D. M. 1997; A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71:5878–5884[PubMed]
    [Google Scholar]
  3. Cliffe A. R., Garber D. A., Knipe D. M. 2009; Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83:8182–8190 [View Article][PubMed]
    [Google Scholar]
  4. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. 1989; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86:4736–4740 [View Article][PubMed]
    [Google Scholar]
  5. Efstathiou S., Kemp S., Darby G., Minson A. C. 1989; The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70:869–879 [View Article][PubMed]
    [Google Scholar]
  6. Garber D. A., Schaffer P. A., Knipe D. M. 1997; A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71:5885–5893[PubMed]
    [Google Scholar]
  7. Hill J. M., Sedarati F., Javier R. T., Wagner E. K., Stevens J. G. 1990; Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 174:117–125 [View Article][PubMed]
    [Google Scholar]
  8. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257 [View Article][PubMed]
    [Google Scholar]
  9. Jurak I., Kramer M. F., Mellor J. C., van Lint A. L., Roth F. P., Knipe D. M., Coen D. M. 2010; Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84:4659–4672 [View Article][PubMed]
    [Google Scholar]
  10. Lachmann R. H., Efstathiou S. 1997; Utilization of the herpes simplex virus type 1 latency-associated regulatory region to drive stable reporter gene expression in the nervous system. J Virol 71:3197–3207[PubMed]
    [Google Scholar]
  11. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989; A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63:2893–2900[PubMed]
    [Google Scholar]
  12. Mador N., Goldenberg D., Cohen O., Panet A., Steiner I. 1998; Herpes simplex virus type 1 latency-associated transcripts suppress viral replication and reduce immediate-early gene mRNA levels in a neuronal cell line. J Virol 72:5067–5075[PubMed]
    [Google Scholar]
  13. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574 [View Article][PubMed]
    [Google Scholar]
  14. Nicoll M. P., Proença J. T., Connor V., Efstathiou S. 2012; Influence of herpes simplex virus 1 latency-associated transcripts on the establishment and maintenance of latency in the ROSA26R reporter mouse model. J Virol 86:8848–8858 [View Article][PubMed]
    [Google Scholar]
  15. Perng G. C., Dunkel E. C., Geary P. A., Slanina S. M., Ghiasi H., Kaiwar R., Nesburn A. B., Wechsler S. L. 1994; The latency-associated transcript gene of herpes simplex virus type 1 (HSV-1) is required for efficient in vivo spontaneous reactivation of HSV-1 from latency. J Virol 68:8045–8055[PubMed]
    [Google Scholar]
  16. Perng G. C., Jones C., Ciacci-Zanella J., Stone M., Henderson G., Yukht A., Slanina S. M., Hofman F. M., Ghiasi H.other authors 2000a; Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503 [View Article][PubMed]
    [Google Scholar]
  17. Perng G. C., Slanina S. M., Yukht A., Ghiasi H., Nesburn A. B., Wechsler S. L. 2000b; The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J Virol 74:1885–1891 [View Article][PubMed]
    [Google Scholar]
  18. Proença J. T., Coleman H. M., Connor V., Winton D. J., Efstathiou S. 2008; A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974 [View Article][PubMed]
    [Google Scholar]
  19. Proença J. T., Coleman H. M., Nicoll M. P., Connor V., Preston C. M., Arthur J., Efstathiou S. 2011; An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 92:2575–2585 [View Article][PubMed]
    [Google Scholar]
  20. Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. L. 1987; Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61:3820–3826[PubMed]
    [Google Scholar]
  21. Sawtell N. M. 1998; The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72:6888–6892[PubMed]
    [Google Scholar]
  22. Sawtell N. M., Thompson R. L., Haas R. L. 2006; Herpes simplex virus DNA synthesis is not a decisive regulatory event in the initiation of lytic viral protein expression in neurons in vivo during primary infection or reactivation from latency. J Virol 80:38–50 [View Article][PubMed]
    [Google Scholar]
  23. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J. H., Fraser N. W. 1989; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J 8:505–511[PubMed]
    [Google Scholar]
  24. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. 1987; RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059 [View Article][PubMed]
    [Google Scholar]
  25. Thompson R. L., Sawtell N. M. 1997; The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol 71:5432–5440[PubMed]
    [Google Scholar]
  26. Thompson R. L., Sawtell N. M. 2000; Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74:965–974 [View Article][PubMed]
    [Google Scholar]
  27. Thompson R. L., Sawtell N. M. 2001; Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 75:6660–6675 [View Article][PubMed]
    [Google Scholar]
  28. Thompson R. L., Sawtell N. M. 2011; The herpes simplex virus type 1 latency associated transcript locus is required for the maintenance of reactivation competent latent infections. J Neurovirol 17:552–558 [View Article][PubMed]
    [Google Scholar]
  29. Umbach J. L., Kramer M. F., Jurak I., Karnowski H. W., Coen D. M., Cullen B. R. 2008; MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783[PubMed]
    [Google Scholar]
  30. Wakim L. M., Jones C. M., Gebhardt T., Preston C. M., Carbone F. R. 2008; CD8+ T-cell attenuation of cutaneous herpes simplex virus infection reduces the average viral copy number of the ensuing latent infection. Immunol Cell Biol 86:666–675 [View Article][PubMed]
    [Google Scholar]
  31. Wang Q. Y., Zhou C., Johnson K. E., Colgrove R. C., Coen D. M., Knipe D. M. 2005; Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 102:16055–16059 [View Article][PubMed]
    [Google Scholar]
  32. Zabolotny J. M., Krummenacher C., Fraser N. W. 1997; The herpes simplex virus type 1 2.0-kilobase latency-associated transcript is a stable intron which branches at a guanosine. J Virol 71:4199–4208[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.056176-0
Loading
/content/journal/jgv/10.1099/vir.0.056176-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed