1887

Abstract

Schmallenberg virus (SBV) is an emerging arbovirus infecting ruminants in Europe. SBV belongs to the family within the Simbu serogroup. Its genome comprises three segments, small (S), medium (M) and large (L), that together encode six proteins and contain NTRs. NTRs are involved in initiation and termination of transcription and in genome packaging. This study explored the 3′ mRNA termini of SBV and related Simbuviruses. In addition, the 5′ termini of SBV messenger RNA (mRNA) were characterized. For the three SBV segments, cap-snatching was found to initiate mRNA transcription both and . The presence of extraneous nucleotides between host RNA leaders and the viral termini fits with the previously described prime-and-realign theory. At the 3′ termini, common features were identified for SBV and related Simbuviruses. However, different patterns were observed for the termini of the three segments from the same virus type.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055954-0
2013-11-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2399.html?itemId=/content/journal/jgv/10.1099/vir.0.055954-0&mimeType=html&fmt=ahah

References

  1. Albariño C. G. , Bird B. H. , Nichol S. T. . ( 2007; ). A shared transcription termination signal on negative and ambisense RNA genome segments of Rift Valley fever, sandfly fever Sicilian, and Toscana viruses. . J Virol 81:, 5246–5256. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barr J. N. , Wertz G. W. . ( 2004; ). Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. . J Virol 78:, 1129–1138. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barr J. N. , Rodgers J. W. , Wertz G. W. . ( 2005; ). The Bunyamwera virus mRNA transcription signal resides within both the 3′ and the 5′ terminal regions and allows ambisense transcription from a model RNA segment. . J Virol 79:, 12602–12607. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barr J. N. , Rodgers J. W. , Wertz G. W. . ( 2006; ). Identification of the Bunyamwera bunyavirus transcription termination signal. . J Gen Virol 87:, 189–198. [CrossRef] [PubMed]
    [Google Scholar]
  5. Beer M. , Conraths F. J. , van der Poel W. H. . ( 2013; ). ‘Schmallenberg virus’ – a novel orthobunyavirus emerging in Europe. . Epidemiol Infect 141:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  6. Blakqori G. , van Knippenberg I. , Elliott R. M. . ( 2009; ). Bunyamwera orthobunyavirus S-segment untranslated regions mediate poly(A) tail-independent translation. . J Virol 83:, 3637–3646. [CrossRef] [PubMed]
    [Google Scholar]
  7. Blakqori G. , Lowen A. C. , Elliott R. M. . ( 2012; ). The small genome segment of Bunyamwera orthobunyavirus harbours a single transcription-termination signal. . J Gen Virol 93:, 1449–1455. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bouloy M. , Pardigon N. , Vialat P. , Gerbaud S. , Girard M. . ( 1990; ). Characterization of the 5′ and 3′ ends of viral messenger RNAs isolated from BHK21 cells infected with Germiston virus (Bunyavirus). . Virology 175:, 50–58. [CrossRef] [PubMed]
    [Google Scholar]
  9. Claine F. , Coupeau D. , Wiggers L. , Muylkens B. , Kirschvink N. . ( 2013; ). Schmallenberg virus among female lambs, Belgium, 2012. . Emerg Infect Dis 19:, 1115–1117. [CrossRef] [PubMed]
    [Google Scholar]
  10. Coupeau D. , Claine F. , Wiggers L. , Kirschvink N. , Muylkens B. . ( 2013; ). In vivo and in vitro identification of a hypervariable region in Schmallenberg virus. . J Gen Virol 94:, 1168–1174. [CrossRef] [PubMed]
    [Google Scholar]
  11. De Regge N. , Deblauwe I. , De Deken R. , Vantieghem P. , Madder M. , Geysen D. , Smeets F. , Losson B. , van den Berg T. , Cay A. B. . ( 2012; ). Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR. . Transbound Emerg Dis 59, 471–475.[CrossRef]
    [Google Scholar]
  12. Dobie D. K. , Blair C. D. , Chandler L. J. , Rayms-Keller A. , McGaw M. M. , Wasieloski L. P. , Beaty B. J. . ( 1997; ). Analysis of LaCrosse virus S mRNA 5′ termini in infected mosquito cells and Aedes triseriatus mosquitoes. . J Virol 71:, 4395–4399.[PubMed]
    [Google Scholar]
  13. Dong H. , Li P. , Böttcher B. , Elliott R. M. , Dong C. . ( 2013a; ). Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism. . RNA 19:, 1129–1136. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dong H. , Li P. , Elliott R. M. , Dong C. . ( 2013b; ). Structure of Schmallenberg orthobunyavirus nucleoprotein suggests a novel mechanism of genome encapsidation. . J Virol 87:, 5593–5601. [CrossRef] [PubMed]
    [Google Scholar]
  15. Duijsings D. , Kormelink R. , Goldbach R. . ( 2001; ). In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. . EMBO J 20:, 2545–2552. [CrossRef] [PubMed]
    [Google Scholar]
  16. Elliott R. M. , Blakqori G. , van Knippenberg I. C. , Koudriakova E. , Li P. , McLees A. , Shi X. , Szemiel A. M. . ( 2013; ). Establishment of a reverse genetic system for Schmallenberg virus, a newly emerged orthobunyavirus in Europe. . J Gen Virol 94:, 851–859. [CrossRef] [PubMed]
    [Google Scholar]
  17. Garcin D. , Lezzi M. , Dobbs M. , Elliott R. M. , Schmaljohn C. , Kang C. Y. , Kolakofsky D. . ( 1995; ). The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. . J Virol 69:, 5754–5762.[PubMed]
    [Google Scholar]
  18. Garigliany M. M. , Hoffmann B. , Dive M. , Sartelet A. , Bayrou C. , Cassart D. , Beer M. , Desmecht D. . ( 2012; ). Schmallenberg virus in calf born at term with porencephaly, Belgium. . Emerg Infect Dis 18:, 1005–1006.[PubMed] [CrossRef]
    [Google Scholar]
  19. Geerts-Dimitriadou C. , Zwart M. P. , Goldbach R. , Kormelink R. . ( 2011; ). Base-pairing promotes leader selection to prime in vitro influenza genome transcription. . Virology 409:, 17–26. [CrossRef] [PubMed]
    [Google Scholar]
  20. Giorgi C. , Accardi L. , Nicoletti L. , Gro M. C. , Takehara K. , Hilditch C. , Morikawa S. , Bishop D. H. . ( 1991; ). Sequences and coding strategies of the S RNAs of Toscana and Rift Valley fever viruses compared to those of Punta Toro, Sicilian sandfly fever, and Uukuniemi viruses. . Virology 180:, 738–753. [CrossRef] [PubMed]
    [Google Scholar]
  21. Goller K. V. , Höper D. , Schirrmeier H. , Mettenleiter T. C. , Beer M. . ( 2012; ). Schmallenberg virus as possible ancestor of Shamonda virus. . Emerg Infect Dis 18:, 1644–1646. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hoffmann B. , Scheuch M. , Höper D. , Jungblut R. , Holsteg M. , Schirrmeier H. , Eschbaumer M. , Goller K. V. , Wernike K. . & other authors ( 2012; ). Novel orthobunyavirus in cattle, Europe, 2011. . Emerg Infect Dis 18:, 469–472. [CrossRef] [PubMed]
    [Google Scholar]
  23. Hutchinson K. L. , Peters C. J. , Nichol S. T. . ( 1996; ). Sin Nombre virus mRNA synthesis. . Virology 224:, 139–149. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ikegami T. , Won S. , Peters C. J. , Makino S. . ( 2007; ). Characterization of Rift Valley fever virus transcriptional terminations. . J Virol 81:, 8421–8438. [CrossRef] [PubMed]
    [Google Scholar]
  25. Jin H. , Elliott R. M. . ( 1991; ). Expression of functional Bunyamwera virus L protein by recombinant vaccinia viruses. . J Virol 65:, 4182–4189.[PubMed]
    [Google Scholar]
  26. Jin H. , Elliott R. M. . ( 1993a; ). Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. . J Virol 67:, 1396–1404.[PubMed]
    [Google Scholar]
  27. Jin H. , Elliott R. M. . ( 1993b; ). Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. . J Gen Virol 74:, 2293–2297. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lara E. , Billecocq A. , Leger P. , Bouloy M. . ( 2011; ). Characterization of wild-type and alternate transcription termination signals in the Rift Valley fever virus genome. . J Virol 85:, 12134–12145. [CrossRef] [PubMed]
    [Google Scholar]
  29. Linden A. , Desmecht D. , Volpe R. , Wirtgen M. , Gregoire F. , Pirson J. , Paternostre J. , Kleijnen D. , Schirrmeier H. . & other authors ( 2012; ). Epizootic spread of Schmallenberg virus among wild cervids, Belgium, fall 2011. . Emerg Infect Dis 18:, 2006–2008. [CrossRef] [PubMed]
    [Google Scholar]
  30. Obijeski J. F. , Bishop D. H. , Murphy F. A. , Palmer E. L. . ( 1976; ). Structural proteins of La Crosse virus. . J Virol 19:, 985–997.[PubMed]
    [Google Scholar]
  31. Rasmussen L. D. , Kristensen B. , Kirkeby C. , Rasmussen T. B. , Belsham G. J. , Bødker R. , Bøtner A. . ( 2012; ). Culicoids as vectors of Schmallenberg virus. . Emerg Infect Dis 18:, 1204–1206. [CrossRef] [PubMed]
    [Google Scholar]
  32. Saegerman C. , Martinelle L. , Dal Pozzo F. , Kirschvink N. . ( 2013; ). Preliminary survey on the impact of Schmallenberg virus on sheep flocks in south of Belgium. . Transbound Emerg Dis [Epub ahead of print]. [CrossRef]
    [Google Scholar]
  33. van Knippenberg I. , Goldbach R. , Kormelink R. . ( 2005a; ). Tomato spotted wilt virus S-segment mRNAs have overlapping 3′-ends containing a predicted stem-loop structure and conserved sequence motif. . Virus Res 110:, 125–131. [CrossRef] [PubMed]
    [Google Scholar]
  34. van Knippenberg I. , Lamine M. , Goldbach R. , Kormelink R. . ( 2005b; ). Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. . Virology 335:, 122–130. [CrossRef] [PubMed]
    [Google Scholar]
  35. Varela M. , Schnettler E. , Caporale M. , Murgia C. , Barry G. , McFarlane M. , McGregor E. , Piras I. M. , Shaw A. . & other authors ( 2013; ). Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. . PLoS Pathog 9:, e1003133. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yanase T. , Kato T. , Aizawa M. , Shuto Y. , Shirafuji H. , Yamakawa M. , Tsuda T. . ( 2012; ). Genetic reassortment between Sathuperi and Shamonda viruses of the genus Orthobunyavirus in nature: implications for their genetic relationship to Schmallenberg virus. . Arch Virol 157:, 1611–1616. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yao M. , Zhang T. , Zhou T. , Zhou Y. , Zhou X. , Tao X. . ( 2012; ). Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. . J Gen Virol 93:, 194–202. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055954-0
Loading
/content/journal/jgv/10.1099/vir.0.055954-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error