1887

Abstract

VPg (virus protein, genome-linked) is a multifunctional protein that plays important roles in viral multiplication in the cytoplasm. However, a number of VPgs encoded by plant viruses target the nucleus and this appears to be biologically significant. These VPgs may therefore be translocated between nuclear and cytoplasmic compartments during virus infection, but such nucleo-cytoplasmic transport has not been demonstrated. We report that VPg encoded by s (WYMV, genus , family ) accumulated in both the nucleus and cytoplasm of infected cells, but localized exclusively in the nucleus when expressed alone in plants. Computational analyses predicted the presence of a nuclear localization signal (NLS) and a nuclear export signal (NES) in WYMV VPg. Mutational analyses showed that both the N-terminal and the NLS domains of VPg contribute to the efficiency of nuclear targeting. and assays indicated that VPg interacts with WYMV coat protein (CP) and proteinase 1 (P1) proteins. Observation of VPg fused to a fluorescent protein and subcellular fractionation experiments showed that VPg was translocated to the cytoplasm when co-expressed with CP, but not with P1. Mutations in the NES domain or treatment with leptomycin B prevented VPg translocation to the cytoplasm when co-expressed with CP. Our results suggest that association with CP facilitates the nuclear export of VPg during WYMV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055830-0
2013-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2790.html?itemId=/content/journal/jgv/10.1099/vir.0.055830-0&mimeType=html&fmt=ahah

References

  1. Andika I. B. , Zheng S. , Tan Z. , Sun L. , Kondo H. , Zhou X. , Chen J. . ( 2013; ). Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. . Virology 435:, 493–503. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anindya R. , Chittori S. , Savithri H. S. . ( 2005; ). Tyrosine 66 of Pepper vein banding virus genome-linked protein is uridylylated by RNA-dependent RNA polymerase. . Virology 336:, 154–162. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beauchemin C. , Laliberté J. F. . ( 2007; ). The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. . J Virol 81:, 10905–10913. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beauchemin C. , Boutet N. , Laliberté J. F. . ( 2007; ). Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. . J Virol 81:, 775–782. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carrington J. C. , Freed D. D. , Leinicke A. J. . ( 1991; ). Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. . Plant Cell 3:, 953–962.[PubMed]
    [Google Scholar]
  6. Chen J. , Sohn A. , Chen J. P. , Lei J. , Cheng Y. , Schulze S. , Steinbiss H. H. , Antoniw J. F. , Adams M. J. . ( 1999; ). Molecular comparisons amongst wheat bymovirus isolates from Asia, North America and Europe. . Plant Pathol 48:, 642–647. [CrossRef]
    [Google Scholar]
  7. Cotton S. , Grangeon R. , Thivierge K. , Mathieu I. , Ide C. , Wei T. , Wang A. , Laliberté J. F. . ( 2009; ). Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. . J Virol 83:, 10460–10471. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fellers J. , Wan J. , Hong Y. , Collins G. B. , Hunt A. G. . ( 1998; ). In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. . J Gen Virol 79:, 2043–2049.[PubMed]
    [Google Scholar]
  9. Goodfellow I. . ( 2011; ). The genome-linked protein VPg of vertebrate viruses – a multifaceted protein. . Curr Opin Virol 1:, 355–362. [CrossRef] [PubMed]
    [Google Scholar]
  10. Goodfellow I. , Chaudhry Y. , Gioldasi I. , Gerondopoulos A. , Natoni A. , Labrie L. , Laliberté J. F. , Roberts L. . ( 2005; ). Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. . EMBO Rep 6:, 968–972. [CrossRef] [PubMed]
    [Google Scholar]
  11. Grzela R. , Szolajska E. , Ebel C. , Madern D. , Favier A. , Wojtal I. , Zagorski W. , Chroboczek J. . ( 2008; ). Virulence factor of potato virus Y, genome-attached terminal protein VPg, is a highly disordered protein. . J Biol Chem 283:, 213–221. [CrossRef] [PubMed]
    [Google Scholar]
  12. Guo D. , Rajamäki M. L. , Saarma M. , Valkonen J. P. . ( 2001; ). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. . J Gen Virol 82:, 935–939.[PubMed]
    [Google Scholar]
  13. Hajimorad M. R. , Ding X. S. , Flasinski S. , Mahajan S. , Graff E. , Haldman-Cahill R. , Carrington J. C. , Cassidy B. G. . ( 1996; ). Nla and Nlb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. . Virology 224:, 368–379. [CrossRef] [PubMed]
    [Google Scholar]
  14. Han C. , Li D. , Xing Y. , Zhu K. , Tian Z. , Cai Z. , Yu J. , Liu Y. . ( 2000; ). Wheat yellow mosaic virus widely occurring in wheat (Triticum aestivum) in China. . Plant Dis 84:, 627–630. [CrossRef]
    [Google Scholar]
  15. Hébrard E. , Poulicard N. , Gérard C. , Traoré O. , Wu H. C. , Albar L. , Fargette D. , Bessin Y. , Vignols F. . ( 2010; ). Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF(iso)4G1 factor correlates with rice susceptibility and RYMV virulence. . Mol Plant Microbe Interact 23:, 1506–1513. [CrossRef] [PubMed]
    [Google Scholar]
  16. Herlitze S. , Koenen M. . ( 1990; ). A general and rapid mutagenesis method using polymerase chain reaction. . Gene 91:, 143–147. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hibino H. , Usugi T. , Saito Y. . ( 1981; ). Comparative electron microscopy of inclusions associated with five soil-borne filamentous viruses of cereals. . Ann Phytopathol Soc Jpn 47:, 510–519. [CrossRef]
    [Google Scholar]
  18. Hiscox J. A. . ( 2003; ). The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. . Virus Res 95:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hiscox J. A. . ( 2007; ). RNA viruses: hijacking the dynamic nucleolus. . Nat Rev Microbiol 5:, 119–127. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hu C. D. , Kerppola T. K. . ( 2003; ). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. . Nat Biotechnol 21:, 539–545. [CrossRef] [PubMed]
    [Google Scholar]
  21. Huang T. S. , Wei T. , Laliberté J. F. , Wang A. . ( 2010; ). A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. . Plant Physiol 152:, 255–266. [CrossRef] [PubMed]
    [Google Scholar]
  22. Huth W. , Lesemann D. E. , Paul H. L. . ( 1984; ). Barley yellow mosaic virus: purification, electron microscopy, serology, and other properties of two types of the virus. . J Phytopathol 111:, 37–54. [CrossRef]
    [Google Scholar]
  23. Jenner C. E. , Nellist C. F. , Barker G. C. , Walsh J. A. . ( 2010; ). Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa . . Mol Plant Microbe Interact 23:, 1498–1505. [CrossRef] [PubMed]
    [Google Scholar]
  24. Jiang J. , Laliberté J. F. . ( 2011; ). The genome-linked protein VPg of plant viruses – a protein with many partners. . Curr Opin Virol 1:, 347–354. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kang B. C. , Yeam I. , Frantz J. D. , Murphy J. F. , Jahn M. M. . ( 2005; ). The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with Tobacco etch virus VPg. . Plant J 42:, 392–405. [CrossRef] [PubMed]
    [Google Scholar]
  26. Khan M. A. , Miyoshi H. , Ray S. , Natsuaki T. , Suehiro N. , Goss D. J. . ( 2006; ). Interaction of genome-linked protein (VPg) of turnip mosaic virus with wheat germ translation initiation factors eIFiso4E and eIFiso4F. . J Biol Chem 281:, 28002–28010. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kim S. H. , Ryabov E. V. , Kalinina N. O. , Rakitina D. V. , Gillespie T. , MacFarlane S. , Haupt S. , Brown J. W. , Taliansky M. . ( 2007; ). Cajal bodies and the nucleolus are required for a plant virus systemic infection. . EMBO J 26:, 2169–2179. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kudo N. , Wolff B. , Sekimoto T. , Schreiner E. P. , Yoneda Y. , Yanagida M. , Horinouchi S. , Yoshida M. . ( 1998; ). Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. . Exp Cell Res 242:, 540–547. [CrossRef] [PubMed]
    [Google Scholar]
  29. la Cour T. , Kiemer L. , Mølgaard A. , Gupta R. , Skriver K. , Brunak S. . ( 2004; ). Analysis and prediction of leucine-rich nuclear export signals. . Protein Eng Des Sel 17:, 527–536. [CrossRef] [PubMed]
    [Google Scholar]
  30. Léonard S. , Viel C. , Beauchemin C. , Daigneault N. , Fortin M. G. , Laliberté J. F. . ( 2004; ). Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. . J Gen Virol 85:, 1055–1063. [CrossRef] [PubMed]
    [Google Scholar]
  31. Li X. H. , Valdez P. , Olvera R. E. , Carrington J. C. . ( 1997; ). Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). . J Virol 71:, 1598–1607.[PubMed]
    [Google Scholar]
  32. Li J. Y. , Chen X. , Fan W. , Moghaddam S. H. , Chen M. , Zhou Z. H. , Yang H. J. , Chen J. E. , Zhong B. X. . ( 2009; ). Proteomic and bioinformatic analysis on endocrine organs of domesticated silkworm, Bombyx mori L. for a comprehensive understanding of their roles and relations. . J Proteome Res 8:, 2620–2632. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lin L. , Shi Y. , Luo Z. , Lu Y. , Zheng H. , Yan F. , Chen J. , Chen J. , Adams M. J. , Wu Y. . ( 2009; ). Protein-protein interactions in two potyviruses using the yeast two-hybrid system. . Virus Res 142:, 36–40. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lu Y. , Yan F. , Guo W. , Zheng H. , Lin L. , Peng J. , Adams M. J. , Chen J. . ( 2011; ). Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus. . Mol Plant Pathol 12:, 666–676. [CrossRef] [PubMed]
    [Google Scholar]
  35. Macara I. G. . ( 2001; ). Transport into and out of the nucleus. . Microbiol Mol Biol Rev 65:, 570–594. [CrossRef] [PubMed]
    [Google Scholar]
  36. Martin M. , Garcia J. , Cervera M. , Goldbach R. , Van Lent J. . ( 1992; ). Intracellular localization of three non-structural plum pox potyvirus proteins by immunogold labelling. . Virus Res 25:, 201–211. [CrossRef]
    [Google Scholar]
  37. Merkle T. . ( 2011; ). Nucleo-cytoplasmic transport of proteins and RNA in plants. . Plant Cell Rep 30:, 153–176. [CrossRef] [PubMed]
    [Google Scholar]
  38. Michon T. , Estevez Y. , Walter J. , German-Retana S. , Le Gall O. . ( 2006; ). The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. . FEBS J 273:, 1312–1322. [CrossRef] [PubMed]
    [Google Scholar]
  39. Morasco B. J. , Sharma N. , Parilla J. , Flanegan J. B. . ( 2003; ). Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis. . J Virol 77:, 5136–5144. [CrossRef] [PubMed]
    [Google Scholar]
  40. Murray K. E. , Barton D. J. . ( 2003; ). Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. . J Virol 77:, 4739–4750. [CrossRef] [PubMed]
    [Google Scholar]
  41. Nakai K. , Kanehisa M. . ( 1991; ). Expert system for predicting protein localization sites in gram-negative bacteria. . Proteins 11:, 95–110. [CrossRef] [PubMed]
    [Google Scholar]
  42. Namba S. , Kashiwazaki S. , Lu X. , Tamura M. , Tsuchizaki T. . ( 1998; ). Complete nucleotide sequence of wheat yellow mosaic bymovirus genomic RNAs. . Arch Virol 143:, 631–643. [CrossRef] [PubMed]
    [Google Scholar]
  43. Nguyen Ba A. N. , Pogoutse A. , Provart N. , Moses A. M. . ( 2009; ). NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. . BMC Bioinformatics 10:, 202. [CrossRef] [PubMed]
    [Google Scholar]
  44. Osman T. A. , Coutts R. H. , Buck K. W. . ( 2006; ). In vitro synthesis of minus-strand RNA by an isolated cereal yellow dwarf virus RNA-dependent RNA polymerase requires VPg and a stem-loop structure at the 3′ end of the virus RNA. . J Virol 80:, 10743–10751. [CrossRef] [PubMed]
    [Google Scholar]
  45. Pemberton L. F. , Paschal B. M. . ( 2005; ). Mechanisms of receptor-mediated nuclear import and nuclear export. . Traffic 6:, 187–198. [CrossRef] [PubMed]
    [Google Scholar]
  46. Puustinen P. , Mäkinen K. . ( 2004; ). Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. . J Biol Chem 279:, 38103–38110. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rajamäki M. L. , Valkonen J. P. . ( 2009; ). Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. . Plant Cell 21:, 2485–2502. [CrossRef] [PubMed]
    [Google Scholar]
  48. Rantalainen K. I. , Uversky V. N. , Permi P. , Kalkkinen N. , Dunker A. K. , Mäkinen K. . ( 2008; ). Potato virus A genome-linked protein VPg is an intrinsically disordered molten globule-like protein with a hydrophobic core. . Virology 377:, 280–288. [CrossRef] [PubMed]
    [Google Scholar]
  49. Restrepo M. A. , Freed D. D. , Carrington J. C. . ( 1990; ). Nuclear transport of plant potyviral proteins. . Plant Cell 2:, 987–998.[PubMed] [CrossRef]
    [Google Scholar]
  50. Restrepo-Hartwig M. A. , Carrington J. C. . ( 1992; ). Regulation of nuclear transport of a plant potyvirus protein by autoproteolysis. . J Virol 66:, 5662–5666.[PubMed]
    [Google Scholar]
  51. Schaad M. C. , Haldeman-Cahill R. , Cronin S. , Carrington J. C. . ( 1996; ). Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. . J Virol 70:, 7039–7048.[PubMed]
    [Google Scholar]
  52. Schaad M. C. , Anderberg R. J. , Carrington J. C. . ( 2000; ). Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. . Virology 273:, 300–306. [CrossRef] [PubMed]
    [Google Scholar]
  53. Shen W. T. , Wang M. Q. , Yan P. , Gao L. , Zhou P. . ( 2010; ). Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system. . Acta Virol 54:, 49–54. [CrossRef] [PubMed]
    [Google Scholar]
  54. Subba-Reddy C. V. , Goodfellow I. , Kao C. C. . ( 2011; ). VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. . J Virol 85:, 13027–13037. [CrossRef] [PubMed]
    [Google Scholar]
  55. Sun L. , Suzuki N. . ( 2008; ). Intragenic rearrangements of a mycoreovirus induced by the multifunctional protein p29 encoded by the prototypic hypovirus CHV1-EP713. . RNA 14:, 2557–2571. [CrossRef] [PubMed]
    [Google Scholar]
  56. Sun B. , Sun L. , Tugume A. , Adams M. , Yang J. , Xie L. , Chen J. . ( 2013a; ). Selection pressure and founder effects constrain genetic variation in differentiated populations of a soil-borne bymovirus Wheat yellow mosaic virus (Potyviridae) in China. . Phytopathology 103, 949–959. [CrossRef]
    [Google Scholar]
  57. Sun L. , Andika I. B. , Kondo H. , Chen J. . ( 2013b; ). Identification of the amino acid residues and domains in the cysteine-rich protein of Chinese wheat mosaic virus that are important for RNA silencing suppression and subcellular localization. . Mol Plant Pathol 14:, 265–278. [CrossRef] [PubMed]
    [Google Scholar]
  58. Sun L. , Xie L. , Andika I. B. , Tan Z. , Chen J. . ( 2013c; ). Non-structural protein P6 encoded by rice black-streaked dwarf virus is recruited to viral inclusion bodies by binding to the viroplasm matrix protein P9-1. . J Gen Virol 94:, 1908–1916. [CrossRef] [PubMed]
    [Google Scholar]
  59. Thivierge K. , Cotton S. , Dufresne P. J. , Mathieu I. , Beauchemin C. , Ide C. , Fortin M. G. , Laliberté J. F. . ( 2008; ). Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. . Virology 377:, 216–225. [CrossRef] [PubMed]
    [Google Scholar]
  60. Usugi T. , Saito Y. . ( 1976; ). Purification and serological properties of barley yellow mosaic virus and wheat yellow mosaic virus. . Ann Phytopathol Soc Jpn 42:, 12–20. [CrossRef]
    [Google Scholar]
  61. Voinnet O. , Vain P. , Angell S. , Baulcombe D. C. . ( 1998; ). Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. . Cell 95:, 177–187. [CrossRef] [PubMed]
    [Google Scholar]
  62. Wei T. , Wang A. . ( 2008; ). Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. . J Virol 82:, 12252–12264. [CrossRef] [PubMed]
    [Google Scholar]
  63. Wittmann S. , Chatel H. , Fortin M. G. , Laliberté J. F. . ( 1997; ). Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. . Virology 234:, 84–92. [CrossRef] [PubMed]
    [Google Scholar]
  64. Xiong R. , Wu J. , Zhou Y. , Zhou X. . ( 2008; ). Identification of a movement protein of the tenuivirus rice stripe virus. . J Virol 82:, 12304–12311. [CrossRef] [PubMed]
    [Google Scholar]
  65. Yambao M. L. , Masuta C. , Nakahara K. , Uyeda I. . ( 2003; ). The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg-HCPro and VPg-VPg interactions. . J Gen Virol 84:, 2861–2869. [CrossRef] [PubMed]
    [Google Scholar]
  66. You Y. , Shirako Y. . ( 2012; ). Influence of amino acid at position 132 in VPg on replication and systemic infection of Barley yellow mosaic virus. . Virus Res 166:, 121–124. [CrossRef] [PubMed]
    [Google Scholar]
  67. Zilian E. , Maiss E. . ( 2011; ). Detection of plum pox potyviral protein-protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. . J Gen Virol 92:, 2711–2723. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055830-0
Loading
/content/journal/jgv/10.1099/vir.0.055830-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error