1887

Abstract

The 5′ untranslated region (5′UTR) of the recently described non-primate hepacivirus (NPHV) contains a region with sequence homology to the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) and GB virus B (GBV-B). Here, we demonstrated internal translation initiation by the NPHV 5′UTR in a bicistronic vector. An RNA stem–loop upstream of the NPHV IRES was structurally distinct from corresponding regions in HCV and GBV-B, and was not required for IRES function. Insertion of the NPHV stem–loop into the corresponding region of the HCV 5′UTR within the HCV subgenomic replicon significantly impaired RNA replication, indicating that long-range interactions between the 5′UTR and -acting downstream elements within the NPHV genome are not interchangeable with those of HCV. Despite similarities in IRES structure and function between hepaciviruses, replication elements in the NPHV 5′UTR appear functionally distinct from those of HCV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055764-0
2013-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2657.html?itemId=/content/journal/jgv/10.1099/vir.0.055764-0&mimeType=html&fmt=ahah

References

  1. Burbelo P. D., Dubovi E. J., Simmonds P., Medina J. L., Henriquez J. A., Mishra N., Wagner J., Tokarz R., Cullen J. M.. & other authors ( 2012;). Serology-enabled discovery of genetically diverse hepaciviruses in a new host. . J Virol 86:, 6171–6178. [CrossRef][PubMed]
    [Google Scholar]
  2. Chandriani S., Skewes-Cox P., Zhong W., Ganem D. E., Divers T. J., Van Blaricum A. J., Tennant B. C., Kistler A. L.. ( 2013;). Identification of a previously undescribed divergent virus from the Flaviviridae family in an outbreak of equine serum hepatitis. . Proc Natl Acad Sci U S A 110:, E1407–E1415. [CrossRef][PubMed]
    [Google Scholar]
  3. Deinhardt F., Holmes A. W., Capps R. B., Popper H.. ( 1967;). Studies on the transmission of human viral hepatitis to marmoset monkeys. I. Transmission of disease, serial passages, and description of liver lesions. . J Exp Med 125:, 673–688. [CrossRef][PubMed]
    [Google Scholar]
  4. García-Sastre A., Evans M. J.. ( 2013;). miR-122 is more than a shield for the hepatitis C virus genome. . Proc Natl Acad Sci U S A 110:, 1571–1572. [CrossRef][PubMed]
    [Google Scholar]
  5. Gaush C. R., Hard W. L., Smith T. F.. ( 1966;). Characterization of an established line of canine kidney cells (MDCK). . Proc Soc Exp Biol Med 122:, 931–935. [CrossRef][PubMed]
    [Google Scholar]
  6. Grace K., Gartland M., Karayiannis P., McGarvey M. J., Clarke B.. ( 1999;). The 5′ untranslated region of GB virus B shows functional similarity to the internal ribosome entry site of hepatitis C virus. . J Gen Virol 80:, 2337–2341.[PubMed]
    [Google Scholar]
  7. Graham F. L., Smiley J., Russell W. C., Nairn R.. ( 1977;). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. . J Gen Virol 36:, 59–72. [CrossRef][PubMed]
    [Google Scholar]
  8. Honda M., Brown E. A., Lemon S. M.. ( 1996a;). Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. . RNA 2:, 955–968.[PubMed]
    [Google Scholar]
  9. Honda M., Ping L. H., Rijnbrand R. C., Amphlett E., Clarke B., Rowlands D., Lemon S. M.. ( 1996b;). Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. . Virology 222:, 31–42. [CrossRef][PubMed]
    [Google Scholar]
  10. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P.. ( 2005;). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. . Science 309:, 1577–1581. [CrossRef][PubMed]
    [Google Scholar]
  11. Kapoor A., Simmonds P., Gerold G., Qaisar N., Jain K., Henriquez J. A., Firth C., Hirschberg D. L., Rice C. M.. & other authors ( 2011;). Characterization of a canine homolog of hepatitis C virus. . Proc Natl Acad Sci U S A 108:, 11608–11613. [CrossRef][PubMed]
    [Google Scholar]
  12. Kapoor A., Simmonds P., Scheel T. K., Hjelle B., Cullen J. M., Burbelo P. D., Chauhan L. V., Duraisamy R., Sanchez Leon M.. & other authors ( 2013;). Identification of rodent homologs of hepatitis C virus and pegiviruses. . MBio 4:, e00216–e13. [CrossRef][PubMed]
    [Google Scholar]
  13. Licursi M., Komatsu Y., Pongnopparat T., Hirasawa K.. ( 2012;). Promotion of viral internal ribosomal entry site-mediated translation under amino acid starvation. . J Gen Virol 93:, 951–962. [CrossRef][PubMed]
    [Google Scholar]
  14. Luo G., Xin S., Cai Z.. ( 2003;). Role of the 5′-proximal stem–loop structure of the 5′ untranslated region in replication and translation of hepatitis C virus RNA. . J Virol 77:, 3312–3318. [CrossRef][PubMed]
    [Google Scholar]
  15. Lyons S., Kapoor A., Sharp C., Schneider B. S., Wolfe N. D., Culshaw G., Corcoran B., McGorum B. C., Simmonds P.. ( 2012;). Nonprimate hepaciviruses in domestic horses, United Kingdom. . Emerg Infect Dis 18:, 1976–1982. [CrossRef][PubMed]
    [Google Scholar]
  16. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J.. ( 1982;). Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. . Cancer Res 42:, 3858–3863.[PubMed]
    [Google Scholar]
  17. Quan P. L., Firth C., Conte J. M., Williams S. H., Zambrana-Torrelio C. M., Anthony S. J., Ellison J. A., Gilbert A. T., Kuzmin I. V.. & other authors ( 2013;). Bats are a major natural reservoir for hepaciviruses and pegiviruses. . Proc Natl Acad Sci U S A 110:, 8194–8199. [CrossRef][PubMed]
    [Google Scholar]
  18. Rijnbrand R., Bredenbeek P., van der Straaten T., Whetter L., Inchauspé G., Lemon S., Spaan W.. ( 1995;). Almost the entire 5′ non-translated region of hepatitis C virus is required for cap-independent translation. . FEBS Lett 365:, 115–119. [CrossRef][PubMed]
    [Google Scholar]
  19. Rijnbrand R., Abell G., Lemon S. M.. ( 2000;). Mutational analysis of the GB virus B internal ribosome entry site. . J Virol 74:, 773–783. [CrossRef][PubMed]
    [Google Scholar]
  20. Romero-López C., Barroso-Deljesus A., García-Sacristán A., Briones C., Berzal-Herranz A.. ( 2012;). The folding of the hepatitis C virus internal ribosome entry site depends on the 3′-end of the viral genome. . Nucleic Acids Res 40:, 11697–11713. [CrossRef][PubMed]
    [Google Scholar]
  21. Shepard C. W., Finelli L., Alter M. J.. ( 2005;). Global epidemiology of hepatitis C virus infection. . Lancet Infect Dis 5:, 558–567. [CrossRef][PubMed]
    [Google Scholar]
  22. Simons J. N., Pilot-Matias T. J., Leary T. P., Dawson G. J., Desai S. M., Schlauder G. G., Muerhoff A. S., Erker J. C., Buijk S. L., Chalmers M. L.. ( 1995;). Identification of two flavivirus-like genomes in the GB hepatitis agent. . Proc Natl Acad Sci U S A 92:, 3401–3405. [CrossRef][PubMed]
    [Google Scholar]
  23. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A.. ( 1992;). Internal ribosome entry site within hepatitis C virus RNA. . J Virol 66:, 1476–1483.[PubMed]
    [Google Scholar]
  24. Warter L., Cohen L., Benureau Y., Chavez D., Yang Y., Bodola F., Lemon S. M., Traboni C., Lanford R. E., Martin A.. ( 2009;). A cooperative interaction between nontranslated RNA sequences and NS5A protein promotes in vivo fitness of a chimeric hepatitis C/GB virus B. . PLoS ONE 4:, e4419. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055764-0
Loading
/content/journal/jgv/10.1099/vir.0.055764-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error