1887

Abstract

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER–Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055442-0
2013-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2636.html?itemId=/content/journal/jgv/10.1099/vir.0.055442-0&mimeType=html&fmt=ahah

References

  1. Allan B. B. , Moyer B. D. , Balch W. E. . ( 2000; ). Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. . Science 289:, 444–448. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altan-Bonnet N. , Sougrat R. , Lippincott-Schwartz J. . ( 2004; ). Molecular basis for Golgi maintenance and biogenesis. . Curr Opin Cell Biol 16:, 364–372. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alvarez C. , Garcia-Mata R. , Brandon E. , Sztul E. . ( 2003; ). COPI recruitment is modulated by a Rab1b-dependent mechanism. . Mol Biol Cell 14:, 2116–2127. [CrossRef] [PubMed]
    [Google Scholar]
  4. Appenzeller-Herzog C. , Hauri H. P. . ( 2006; ). The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. . J Cell Sci 119:, 2173–2183. [CrossRef] [PubMed]
    [Google Scholar]
  5. Armer H. , Moffat K. , Wileman T. , Belsham G. J. , Jackson T. , Duprex W. P. , Ryan M. , Monaghan P. . ( 2008; ). Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton via the nonstructural protein 3Cpro. . J Virol 82:, 10556–10566. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bannykh S. I. , Rowe T. , Balch W. E. . ( 1996; ). The organization of endoplasmic reticulum export complexes. . J Cell Biol 135:, 19–35. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bannykh S. I. , Plutner H. , Matteson J. , Balch W. E. . ( 2005; ). The role of ARF1 and rab GTPases in polarization of the Golgi stack. . Traffic 6:, 803–819. [CrossRef] [PubMed]
    [Google Scholar]
  8. Barlowe C. , Orci L. , Yeung T. , Hosobuchi M. , Hamamoto S. , Salama N. , Rexach M. F. , Ravazzola M. , Amherdt M. , Schekman R. . ( 1994; ). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. . Cell 77:, 895–907. [CrossRef] [PubMed]
    [Google Scholar]
  9. Beck R. , Rawet M. , Wieland F. T. , Cassel D. . ( 2009; ). The COPI system: molecular mechanisms and function. . FEBS Lett 583:, 2701–2709. [CrossRef] [PubMed]
    [Google Scholar]
  10. Belov G. A. , Altan-Bonnet N. , Kovtunovych G. , Jackson C. L. , Lippincott-Schwartz J. , Ehrenfeld E. . ( 2007; ). Hijacking components of the cellular secretory pathway for replication of poliovirus RNA. . J Virol 81:, 558–567. [CrossRef] [PubMed]
    [Google Scholar]
  11. Belov G. A. , Kovtunovych G. , Jackson C. L. , Ehrenfeld E. . ( 2010; ). Poliovirus replication requires the N-terminus but not the catalytic Sec7 domain of ArfGEF GBF1. . Cell Microbiol 12:, 1463–1479. [CrossRef] [PubMed]
    [Google Scholar]
  12. Belsham G. J. , McInerney G. M. , Ross-Smith N. . ( 2000; ). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. . J Virol 74:, 272–280. [CrossRef] [PubMed]
    [Google Scholar]
  13. Berryman S. , Clark S. , Monaghan P. , Jackson T. . ( 2005; ). Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. . J Virol 79:, 8519–8534. [CrossRef] [PubMed]
    [Google Scholar]
  14. Bielli A. , Haney C. J. , Gabreski G. , Watkins S. C. , Bannykh S. I. , Aridor M. . ( 2005; ). Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. . J Cell Biol 171:, 919–924. [CrossRef] [PubMed]
    [Google Scholar]
  15. Choe S. S. , Dodd D. A. , Kirkegaard K. . ( 2005; ). Inhibition of cellular protein secretion by picornaviral 3A proteins. . Virology 337:, 18–29. [CrossRef] [PubMed]
    [Google Scholar]
  16. Claude A. , Zhao B. P. , Kuziemsky C. E. , Dahan S. , Berger S. J. , Yan J. P. , Armold A. D. , Sullivan E. M. , Melancon P. . ( 1999; ). GBF1: a novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. . J Cell Biol 146:, 71–84.[PubMed] [CrossRef]
    [Google Scholar]
  17. Coyne C. B. , Bozym R. , Morosky S. A. , Hanna S. L. , Mukherjee A. , Tudor M. , Kim K. S. , Cherry S. . ( 2011; ). Comparative RNAi screening reveals host factors involved in enterovirus infection of polarized endothelial monolayers. . Cell Host Microbe 9:, 70–82. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dascher C. , Balch W. E. . ( 1994; ). Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. . J Biol Chem 269:, 1437–1448.[PubMed]
    [Google Scholar]
  19. De Diego M. , Brocchi E. , Mackay D. , De Simone F. . ( 1997; ). The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. . Arch Virol 142:, 2021–2033. [CrossRef] [PubMed]
    [Google Scholar]
  20. Duden R. . ( 2003; ). ER-to-Golgi transport: COP I and COP II function. . Mol Membr Biol 20:, 197–207. [CrossRef] [PubMed]
    [Google Scholar]
  21. Dumaresq-Doiron K. , Savard M. F. , Akam S. , Costantino S. , Lefrancois S. . ( 2010; ). The phosphatidylinositol 4-kinase PI4KIIIalpha is required for the recruitment of GBF1 to Golgi membranes. . J Cell Sci 123:, 2273–2280. [CrossRef] [PubMed]
    [Google Scholar]
  22. Fujiwara T. , Oda K. , Yokota S. , Takatsuki A. , Ikehara Y. . ( 1988; ). Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. . J Biol Chem 263:, 18545–18552.[PubMed]
    [Google Scholar]
  23. Gazina E. V. , Mackenzie J. M. , Gorrell R. J. , Anderson D. A. . ( 2002; ). Differential requirements for COPI coats in formation of replication complexes among three genera of Picornaviridae. . J Virol 76:, 11113–11122. [CrossRef] [PubMed]
    [Google Scholar]
  24. Girod A. , Storrie B. , Simpson J. C. , Johannes L. , Goud B. , Roberts L. M. , Lord J. M. , Nilsson T. , Pepperkok R. . ( 1999; ). Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. . Nat Cell Biol 1:, 423–430. [CrossRef] [PubMed]
    [Google Scholar]
  25. Gold S. , Monaghan P. , Mertens P. , Jackson T. . ( 2010; ). A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells. . PLoS ONE 5:, e11360. [CrossRef] [PubMed]
    [Google Scholar]
  26. Grigoriev I. , Splinter D. , Keijzer N. , Wulf P. S. , Demmers J. , Ohtsuka T. , Modesti M. , Maly I. V. , Grosveld F. . & other authors ( 2007; ). Rab6 regulates transport and targeting of exocytotic carriers. . Dev Cell 13:, 305–314. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hauri H. P. , Kappeler F. , Andersson H. , Appenzeller C. . ( 2000; ). ERGIC-53 and traffic in the secretory pathway. . J Cell Sci 113:, 587–596.[PubMed]
    [Google Scholar]
  28. Honda A. , Al-Awar O. S. , Hay J. C. , Donaldson J. G. . ( 2005; ). Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. . J Cell Biol 168:, 1039–1051. [CrossRef] [PubMed]
    [Google Scholar]
  29. Hsu N. Y. , Ilnytska O. , Belov G. , Santiana M. , Chen Y. H. , Takvorian P. M. , Pau C. , van der Schaar H. , Kaushik-Basu N. . & other authors ( 2010; ). Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. . Cell 141:, 799–811. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hughes H. , Stephens D. J. . ( 2008; ). Assembly, organization, and function of the COPII coat. . Histochem Cell Biol 129:, 129–151. [CrossRef] [PubMed]
    [Google Scholar]
  31. Jackson T. , Ellard F. M. , Ghazaleh R. A. , Brookes S. M. , Blakemore W. E. , Corteyn A. H. , Stuart D. I. , Newman J. W. , King A. M. . ( 1996; ). Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. . J Virol 70:, 5282–5287.[PubMed]
    [Google Scholar]
  32. Jackson T. , Sheppard D. , Denyer M. , Blakemore W. , King A. M. . ( 2000; ). The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. . J Virol 74:, 4949–4956. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kawamoto K. , Yoshida Y. , Tamaki H. , Torii S. , Shinotsuka C. , Yamashina S. , Nakayama K. . ( 2002; ). GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat. . Traffic 3:, 483–495. [CrossRef] [PubMed]
    [Google Scholar]
  34. Klumperman J. , Schweizer A. , Clausen H. , Tang B. L. , Hong W. , Oorschot V. , Hauri H. P. . ( 1998; ). The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. . J Cell Sci 111:, 3411–3425.[PubMed]
    [Google Scholar]
  35. Kuge O. , Dascher C. , Orci L. , Rowe T. , Amherdt M. , Plutner H. , Ravazzola M. , Tanigawa G. , Rothman J. E. , Balch W. E. . ( 1994; ). Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. . J Cell Biol 125:, 51–65. [CrossRef] [PubMed]
    [Google Scholar]
  36. Lanke K. H. , van der Schaar H. M. , Belov G. A. , Feng Q. , Duijsings D. , Jackson C. L. , Ehrenfeld E. , van Kuppeveld F. J. . ( 2009; ). GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. . J Virol 83:, 11940–11949. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lippincott-Schwartz J. , Yuan L. C. , Bonifacino J. S. , Klausner R. D. . ( 1989; ). Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. . Cell 56:, 801–813. [CrossRef] [PubMed]
    [Google Scholar]
  38. Manolea F. , Claude A. , Chun J. , Rosas J. , Melançon P. . ( 2008; ). Distinct functions for Arf guanine nucleotide exchange factors at the Golgi complex: GBF1 and BIGs are required for assembly and maintenance of the Golgi stack and trans-Golgi network, respectively. . Mol Biol Cell 19:, 523–535. [CrossRef] [PubMed]
    [Google Scholar]
  39. Martín-Acebes M. A. , González-Magaldi M. , Rosas M. F. , Borrego B. , Brocchi E. , Armas-Portela R. , Sobrino F. . ( 2008; ). Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: a comparative study with foot-and-mouth disease virus and vesicular stomatitis virus. . Virology 374:, 432–443. [CrossRef] [PubMed]
    [Google Scholar]
  40. Martinez O. , Antony C. , Pehau-Arnaudet G. , Berger E. G. , Salamero J. , Goud B. . ( 1997; ). GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. . Proc Natl Acad Sci U S A 94:, 1828–1833. [CrossRef] [PubMed]
    [Google Scholar]
  41. Maynell L. A. , Kirkegaard K. , Klymkowsky M. W. . ( 1992; ). Inhibition of poliovirus RNA synthesis by brefeldin A. . J Virol 66:, 1985–1994.[PubMed]
    [Google Scholar]
  42. Moffat K. , Howell G. , Knox C. , Belsham G. J. , Monaghan P. , Ryan M. D. , Wileman T. . ( 2005; ). Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. . J Virol 79:, 4382–4395. [CrossRef] [PubMed]
    [Google Scholar]
  43. Moffat K. , Knox C. , Howell G. , Clark S. J. , Yang H. , Belsham G. J. , Ryan M. , Wileman T. . ( 2007; ). Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. . J Virol 81:, 1129–1139. [CrossRef] [PubMed]
    [Google Scholar]
  44. Monaghan P. , Cook H. , Jackson T. , Ryan M. , Wileman T. . ( 2004; ). The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. . J Gen Virol 85:, 933–946. [CrossRef] [PubMed]
    [Google Scholar]
  45. Monetta P. , Slavin I. , Romero N. , Alvarez C. . ( 2007; ). Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association. . Mol Biol Cell 18:, 2400–2410. [CrossRef] [PubMed]
    [Google Scholar]
  46. Mossessova E. , Corpina R. A. , Goldberg J. . ( 2003; ). Crystal structure of ARF1*Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism. . Mol Cell 12:, 1403–1411. [CrossRef] [PubMed]
    [Google Scholar]
  47. Mukhopadhyay A. , Nieves E. , Che F. Y. , Wang J. , Jin L. , Murray J. W. , Gordon K. , Angeletti R. H. , Wolkoff A. W. . ( 2011; ). Proteomic analysis of endocytic vesicles: Rab1a regulates motility of early endocytic vesicles. . J Cell Sci 124:, 765–775. [CrossRef] [PubMed]
    [Google Scholar]
  48. Nuoffer C. , Davidson H. W. , Matteson J. , Meinkoth J. , Balch W. E. . ( 1994; ). A GDP-bound of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. . J Cell Biol 125:, 225–237. [CrossRef] [PubMed]
    [Google Scholar]
  49. O’Donnell V. K. , Pacheco J. M. , Henry T. M. , Mason P. W. . ( 2001; ). Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. . Virology 287:, 151–162. [CrossRef] [PubMed]
    [Google Scholar]
  50. Peyroche A. , Antonny B. , Robineau S. , Acker J. , Cherfils J. , Jackson C. L. . ( 1999; ). Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. . Mol Cell 3:, 275–285. [CrossRef] [PubMed]
    [Google Scholar]
  51. Pfeffer S. R. . ( 2001; ). Rab GTPases: specifying and deciphering organelle identity and function. . Trends Cell Biol 11:, 487–491. [CrossRef] [PubMed]
    [Google Scholar]
  52. Pind S. N. , Nuoffer C. , McCaffery J. M. , Plutner H. , Davidson H. W. , Farquhar M. G. , Balch W. E. . ( 1994; ). Rab1 and Ca2+ are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport. . J Cell Biol 125:, 239–252. [CrossRef] [PubMed]
    [Google Scholar]
  53. Plutner H. , Schwaninger R. , Pind S. , Balch W. E. . ( 1990; ). Synthetic peptides of the Rab effector domain inhibit vesicular transport through the secretory pathway. . EMBO J 9:, 2375–2383.[PubMed]
    [Google Scholar]
  54. Plutner H. , Cox A. D. , Pind S. , Khosravi-Far R. , Bourne J. R. , Schwaninger R. , Der C. J. , Balch W. E. . ( 1991; ). Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. . J Cell Biol 115:, 31–43. [CrossRef] [PubMed]
    [Google Scholar]
  55. Reid S. M. , Ebert K. , Bachanek-Bankowska K. , Batten C. , Sanders A. , Wright C. , Shaw A. E. , Ryan E. D. , Hutchings G. H. . & other authors ( 2009; ). Performance of real-time reverse transcription polymerase chain reaction for the detection of foot-and-mouth disease virus during field outbreaks in the United Kingdom in 2007. . J VET Diagn Invest 21:, 321–330. [CrossRef] [PubMed]
    [Google Scholar]
  56. Renault L. , Guibert B. , Cherfils J. . ( 2003; ). Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. . Nature 426:, 525–530. [CrossRef] [PubMed]
    [Google Scholar]
  57. Rouiller I. , Brookes S. M. , Hyatt A. D. , Windsor M. , Wileman T. . ( 1998; ). African swine fever virus is wrapped by the endoplasmic reticulum. . J Virol 72:, 2373–2387.[PubMed]
    [Google Scholar]
  58. Rust R. C. , Landmann L. , Gosert R. , Tang B. L. , Hong W. , Hauri H. P. , Egger D. , Bienz K. . ( 2001; ). Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. . J Virol 75:, 9808–9818. [CrossRef] [PubMed]
    [Google Scholar]
  59. Schwartz S. L. , Cao C. , Pylypenko O. , Rak A. , Wandinger-Ness A. . ( 2007; ). Rab GTPases at a glance. . J Cell Sci 120:, 3905–3910. [CrossRef] [PubMed]
    [Google Scholar]
  60. Schweizer A. , Fransen J. A. , Bachi T. , Ginsel L. , Hauri H. P. . ( 1988; ). Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. . J Cell Biol 107:, 1643–1653. [CrossRef] [PubMed]
    [Google Scholar]
  61. Sclafani A. , Chen S. , Rivera-Molina F. , Reinisch K. , Novick P. , Ferro-Novick S. . ( 2010; ). Establishing a role for the GTPase Ypt1p at the late Golgi. . Traffic 11:, 520–532. [CrossRef] [PubMed]
    [Google Scholar]
  62. Scudamore J. M. , Harris D. M. . ( 2002; ). Control of foot and mouth disease: lessons from the experience of the outbreak in Great Britain in 2001. . Rev Sci Tech 21:, 699–710.[PubMed]
    [Google Scholar]
  63. Stenmark H. . ( 2009; ). Rab GTPases as coordinators of vesicle traffic. . Nat Rev Mol Cell Biol 10:, 513–525. [CrossRef] [PubMed]
    [Google Scholar]
  64. Stephens D. J. , Lin-Marq N. , Pagano A. , Pepperkok R. , Paccaud J. P. . ( 2000; ). COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. . J Cell Sci 113:, 2177–2185.[PubMed]
    [Google Scholar]
  65. Teterina N. L. , Pinto Y. , Weaver J. D. , Jensen K. S. , Ehrenfeld E. . ( 2011; ). Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells. . J Virol 85:, 4284–4296. [CrossRef] [PubMed]
    [Google Scholar]
  66. Tisdale E. J. , Bourne J. R. , Khosravi-Far R. , Der C. J. , Balch W. E. . ( 1992; ). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. . J Cell Biol 119:, 749–761. [CrossRef] [PubMed]
    [Google Scholar]
  67. Togawa A. , Morinaga N. , Ogasawara M. , Moss J. , Vaughan M. . ( 1999; ). Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. . J Biol Chem 274:, 12308–12315. [CrossRef] [PubMed]
    [Google Scholar]
  68. Trahey M. , Oh H. S. , Cameron C. E. , Hay J. C. . ( 2012; ). Poliovirus infection transiently increases COPII vesicle budding. . J Virol 86:, 9675–9682. [CrossRef] [PubMed]
    [Google Scholar]
  69. Wang J. , Wu Z. , Jin Q. . ( 2012; ). COPI is required for enterovirus 71 replication. . PLoS ONE 7:, e38035. [CrossRef] [PubMed]
    [Google Scholar]
  70. Ward T. H. , Polishchuk R. S. , Caplan S. , Hirschberg K. , Lippincott-Schwartz J. . ( 2001; ). Maintenance of Golgi structure and function depends on the integrity of ER export. . J Cell Biol 155:, 557–570. [CrossRef] [PubMed]
    [Google Scholar]
  71. Wessels E. , Duijsings D. , Lanke K. H. , van Dooren S. H. , Jackson C. L. , Melchers W. J. , van Kuppeveld F. J. . ( 2006a; ). Effects of picornavirus 3A proteins on protein transport and GBF1-dependent COP-I recruitment. . J Virol 80:, 11852–11860. [CrossRef] [PubMed]
    [Google Scholar]
  72. Wessels E. , Duijsings D. , Niu T. K. , Neumann S. , Oorschot V. M. , de Lange F. , Lanke K. H. , Klumperman J. , Henke A. . & other authors ( 2006b; ). A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. . Dev Cell 11:, 191–201. [CrossRef] [PubMed]
    [Google Scholar]
  73. White J. , Johannes L. , Mallard F. , Girod A. , Grill S. , Reinsch S. , Keller P. , Tzschaschel B. , Echard A. . & other authors ( 1999; ). Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. . J Cell Biol 147:, 743–760. [CrossRef] [PubMed]
    [Google Scholar]
  74. Winslow A. R. , Chen C. W. , Corrochano S. , Acevedo-Arozena A. , Gordon D. E. , Peden A. A. , Lichtenberg M. , Menzies F. M. , Ravikumar B. . & other authors ( 2010; ). alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. . J Cell Biol 190:, 1023–1037. [CrossRef] [PubMed]
    [Google Scholar]
  75. Young J. , Stauber T. , del Nery E. , Vernos I. , Pepperkok R. , Nilsson T. . ( 2005; ). Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A′. . Mol Biol Cell 16:, 162–177. [CrossRef] [PubMed]
    [Google Scholar]
  76. Zerial M. , McBride H. . ( 2001; ). Rab proteins as membrane organizers. . Nat Rev Mol Cell Biol 2:, 107–117. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055442-0
Loading
/content/journal/jgv/10.1099/vir.0.055442-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error