1887

Abstract

Junin virus (JUNV) has been identified as the aetiological agent of Argentine haemorrhagic fever (AHF), which is a serious public health problem with approximately 5 million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense ssRNA virus that belongs to the genus within the family , and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. Here, we determined a 2.2 Å crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the Lassa fever virus (LASV) NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the negative-sense ssRNA virus NPs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.055053-0
2013-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/10/2175.html?itemId=/content/journal/jgv/10.1099/vir.0.055053-0&mimeType=html&fmt=ahah

References

  1. Adams P. D., Grosse-Kunstleve R. W., Hung L. W., Ioerger T. R., McCoy A. J., Moriarty N. W., Read R. J., Sacchettini J. C., Sauter N. K., Terwilliger T. C.. ( 2002;). phenix: building new software for automated crystallographic structure determination. . Acta Crystallogr D Biol Crystallogr 58:, 1948–1954. [CrossRef][PubMed]
    [Google Scholar]
  2. Albertini A. A., Wernimont A. K., Muziol T., Ravelli R. B., Clapier C. R., Schoehn G., Weissenhorn W., Ruigrok R. W.. ( 2006;). Crystal structure of the rabies virus nucleoprotein–RNA complex. . Science 313:, 360–363. [CrossRef][PubMed]
    [Google Scholar]
  3. Albertini A. A., Schoehn G., Weissenhorn W., Ruigrok R. W.. ( 2008;). Structural aspects of rabies virus replication. . Cell Mol Life Sci 65:, 282–294. [CrossRef][PubMed]
    [Google Scholar]
  4. Ariza A., Tanner S. J., Walter C. T., Dent K. C., Shepherd D. A., Wu W., Matthews S. V., Hiscox J. A., Green T. J.. & other authors ( 2013;). Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. . Nucleic Acids Res 41:, 5912–5926. [CrossRef][PubMed]
    [Google Scholar]
  5. Brunotte L., Kerber R., Shang W., Hauer F., Hass M., Gabriel M., Lelke M., Busch C., Stark H.. & other authors ( 2011;). Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy. . J Biol Chem 286:, 38748–38756. [CrossRef][PubMed]
    [Google Scholar]
  6. Casabona J. C., Levingston Macleod J. M., Loureiro M. E., Gomez G. A., Lopez N.. ( 2009;). The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles. . J Virol 83:, 7029–7039. [CrossRef][PubMed]
    [Google Scholar]
  7. Cisneros G. A., Perera L., Schaaper R. M., Pedersen L. C., London R. E., Pedersen L. G., Darden T. A.. ( 2009;). Reaction mechanism of the epsilon subunit of E. coli DNA polymerase III: insights into active site metal coordination and catalytically significant residues. . J Am Chem Soc 131:, 1550–1556. [CrossRef][PubMed]
    [Google Scholar]
  8. Cuevas C. D., Lavanya M., Wang E., Ross S. R.. ( 2011;). Junin virus infects mouse cells and induces innate immune responses. . J Virol 85:, 11058–11068. [CrossRef][PubMed]
    [Google Scholar]
  9. de Silva U., Choudhury S., Bailey S. L., Harvey S., Perrino F. W., Hollis T.. ( 2007;). The crystal structure of TREX1 explains the 3′ nucleotide specificity and reveals a polyproline II helix for protein partnering. . J Biol Chem 282:, 10537–10543. [CrossRef][PubMed]
    [Google Scholar]
  10. DeLano W. L.. ( 2002;). The PyMOL Molecular Graphics System. San Carlos, CA:: DeLano Scientific;.
    [Google Scholar]
  11. Eckerle L. D., Becker M. M., Halpin R. A., Li K., Venter E., Lu X., Scherbakova S., Graham R. L., Baric R. S.. & other authors ( 2010;). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. . PLoS Pathog 6:, e1000896. [CrossRef][PubMed]
    [Google Scholar]
  12. Emsley P., Cowtan K.. ( 2004;). Coot: model-building tools for molecular graphics. . Acta Crystallogr D Biol Crystallogr 60:, 2126–2132. [CrossRef][PubMed]
    [Google Scholar]
  13. Enria D. A., Briggiler A. M., Sánchez Z.. ( 2008;). Treatment of Argentine hemorrhagic fever. . Antiviral Res 78:, 132–139. [CrossRef][PubMed]
    [Google Scholar]
  14. Ge P., Tsao J., Schein S., Green T. J., Luo M., Zhou Z. H.. ( 2010;). Cryo-EM model of the bullet-shaped vesicular stomatitis virus. . Science 327:, 689–693. [CrossRef][PubMed]
    [Google Scholar]
  15. Grant A., Seregin A., Huang C., Kolokoltsova O., Brasier A., Peters C., Paessler S.. ( 2012;). Junín virus pathogenesis and virus replication. . Viruses 4:, 2317–2339. [CrossRef][PubMed]
    [Google Scholar]
  16. Green T. J., Zhang X., Wertz G. W., Luo M.. ( 2006;). Structure of the vesicular stomatitis virus nucleoprotein–RNA complex. . Science 313:, 357–360. [CrossRef][PubMed]
    [Google Scholar]
  17. Guo Y., Wang W., Ji W., Deng M., Sun Y., Zhou H., Yang C., Deng F., Wang H.. & other authors ( 2012;). Crimean–Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses. . Proc Natl Acad Sci U S A 109:, 5046–5051. [CrossRef][PubMed]
    [Google Scholar]
  18. Hastie K. M., Kimberlin C. R., Zandonatti M. A., MacRae I. J., Saphire E. O.. ( 2011a;). Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. . Proc Natl Acad Sci U S A 108:, 2396–2401. [CrossRef][PubMed]
    [Google Scholar]
  19. Hastie K. M., Liu T., Li S., King L. B., Ngo N., Zandonatti M. A., Woods V. L. Jr, de la Torre J. C., Saphire E. O.. ( 2011b;). Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding. . Proc Natl Acad Sci U S A 108:, 19365–19370. [CrossRef][PubMed]
    [Google Scholar]
  20. Holm L., Rosenström P.. ( 2010;). Dali server: conservation mapping in 3D. . Nucleic Acids Res 38: (Web Server issue), W545–W549. [CrossRef][PubMed]
    [Google Scholar]
  21. Jiang X., Huang Q., Wang W., Dong H., Ly H., Liang Y., Dong C.. ( 2013;). Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression. . J Biol Chem 288:, 16949–16959. [CrossRef][PubMed]
    [Google Scholar]
  22. Kranzusch P. J., Whelan S. P.. ( 2012;). Architecture and regulation of negative-strand viral enzymatic machinery. . RNA Biol 9:, 941–948. [CrossRef][PubMed]
    [Google Scholar]
  23. Laskowski R., MacArthur M. W., Moss D. S., Thornton J. M.. ( 1993;). procheck: A program to check the stereochemical quality of protein structures. . J Appl Cryst 26:, 283–291. [CrossRef]
    [Google Scholar]
  24. Levingston Macleod J. M., D’Antuono A., Loureiro M. E., Casabona J. C., Gomez G. A., Lopez N.. ( 2011;). Identification of two functional domains within the arenavirus nucleoprotein. . J Virol 85:, 2012–2023. [CrossRef][PubMed]
    [Google Scholar]
  25. Li B., Wang Q., Pan X., Fernández de Castro I., Sun Y., Guo Y., Tao X., Risco C., Sui S. F., Lou Z.. ( 2013;). Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation. . Proc Natl Acad Sci U S A 110:, 9048–9053. [CrossRef][PubMed]
    [Google Scholar]
  26. Martínez-Sobrido L., Giannakas P., Cubitt B., García-Sastre A., de la Torre J. C.. ( 2007;). Differential inhibition of type I interferon induction by arenavirus nucleoproteins. . J Virol 81:, 12696–12703. [CrossRef][PubMed]
    [Google Scholar]
  27. Mills J. N., Ellis B. A., Childs J. E., McKee K. T. Jr, Maiztegui J. I., Peters C. J., Ksiazek T. G., Jahrling P. B.. ( 1994;). Prevalence of infection with Junin virus in rodent populations in the epidemic area of Argentine hemorrhagic fever. . Am J Trop Med Hyg 51:, 554–562.[PubMed]
    [Google Scholar]
  28. Minskaia E., Hertzig T., Gorbalenya A. E., Campanacci V., Cambillau C., Canard B., Ziebuhr J.. ( 2006;). Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. . Proc Natl Acad Sci U S A 103:, 5108–5113. [CrossRef][PubMed]
    [Google Scholar]
  29. Ng A. K., Zhang H., Tan K., Li Z., Liu J. H., Chan P. K., Li S. M., Chan W. Y., Au S. W.. & other authors ( 2008;). Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. . FASEB J 22:, 3638–3647. [CrossRef][PubMed]
    [Google Scholar]
  30. Ng A. K., Lam M. K., Zhang H., Liu J., Au S. W., Chan P. K., Wang J., Shaw P. C.. ( 2012;). Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein. . J Virol 86:, 6758–6767. [CrossRef][PubMed]
    [Google Scholar]
  31. Niu F., Shaw N., Wang Y. E., Jiao L., Ding W., Li X., Zhu P., Upur H., Ouyang S.. & other authors ( 2013;). Structure of the Leanyer orthobunyavirus nucleoprotein–RNA complex reveals unique architecture for RNA encapsidation. . Proc Natl Acad Sci U S A 110:, 9054–9059. [CrossRef][PubMed]
    [Google Scholar]
  32. Otwinowski Z., Minor W.. ( 1997; ). Processing of X-ray diffraction data collected in oscillation mode. . In Methods in Enzymology, vol. 276. Macromolecular Crystallography, Part A, pp. 307–326. Edited by Carter C. W. Jr, Sweet R. M... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  33. Parodi A. S., Coto C. E., Boxaca M., Lajmanovich S., González S.. ( 1966;). Characteristics of Junin virus.. Arch Gesamte Virusforsch 19:, 393–402. [CrossRef][PubMed]
    [Google Scholar]
  34. Perez M., Craven R. C., de la Torre J. C.. ( 2003;). The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. . Proc Natl Acad Sci U S A 100:, 12978–12983. [CrossRef][PubMed]
    [Google Scholar]
  35. Qi X., Lan S., Wang W., Schelde L. M., Dong H., Wallat G. D., Ly H., Liang Y., Dong C.. ( 2010;). Cap binding and immune evasion revealed by Lassa nucleoprotein structure. . Nature 468:, 779–783. [CrossRef][PubMed]
    [Google Scholar]
  36. Reguera J., Malet H., Weber F., Cusack S.. ( 2013;). Structural basis for encapsidation of genomic RNA by La Crosse orthobunyavirus nucleoprotein. . Proc Natl Acad Sci U S A 110:, 7246–7251. [CrossRef][PubMed]
    [Google Scholar]
  37. Rudolph M. G., Kraus I., Dickmanns A., Eickmann M., Garten W., Ficner R.. ( 2003;). Crystal structure of the Borna disease virus nucleoprotein. . Structure 11:, 1219–1226. [CrossRef][PubMed]
    [Google Scholar]
  38. Ruigrok R. W., Crépin T., Kolakofsky D.. ( 2011;). Nucleoproteins and nucleocapsids of negative-strand RNA viruses. . Curr Opin Microbiol 14:, 504–510. [CrossRef][PubMed]
    [Google Scholar]
  39. Steitz T. A., Steitz J. A.. ( 1993;). A general two-metal-ion mechanism for catalytic RNA. . Proc Natl Acad Sci U S A 90:, 6498–6502. [CrossRef][PubMed]
    [Google Scholar]
  40. Strecker T., Eichler R., Meulen J., Weissenhorn W., Dieter Klenk H., Garten W., Lenz O.. ( 2003;). Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. . J Virol 77:, 10700–10705. [CrossRef][PubMed]
    [Google Scholar]
  41. Sun Y., Guo Y., Lou Z.. ( 2012;). A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. . Protein Cell 3:, 893–902. [CrossRef][PubMed]
    [Google Scholar]
  42. Tawar R. G., Duquerroy S., Vonrhein C., Varela P. F., Damier-Piolle L., Castagné N., MacLellan K., Bedouelle H., Bricogne G.. & other authors ( 2009;). Crystal structure of a nucleocapsid-like nucleoprotein–RNA complex of respiratory syncytial virus. . Science 326:, 1279–1283. [CrossRef][PubMed]
    [Google Scholar]
  43. Terwilliger T. C.. ( 2000;). Maximum-likelihood density modification. . Acta Crystallogr D Biol Crystallogr 56:, 965–972. [CrossRef][PubMed]
    [Google Scholar]
  44. Terwilliger T. C., Berendzen J.. ( 1999;). Automated MAD and MIR structure solution. . Acta Crystallogr D Biol Crystallogr 55:, 849–861. [CrossRef][PubMed]
    [Google Scholar]
  45. Urata S., Noda T., Kawaoka Y., Yokosawa H., Yasuda J.. ( 2006;). Cellular factors required for Lassa virus budding. . J Virol 80:, 4191–4195. [CrossRef][PubMed]
    [Google Scholar]
  46. Urata S., Yasuda J., de la Torre J. C.. ( 2009;). The Z protein of the New World arenavirus Tacaribe virus has bona fide budding activity that does not depend on known late domain motifs. . J Virol 83:, 12651–12655. [CrossRef][PubMed]
    [Google Scholar]
  47. Yan N., Regalado-Magdos A. D., Stiggelbout B., Lee-Kirsch M. A., Lieberman J.. ( 2010;). The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. . Nat Immunol 11:, 1005–1013. [CrossRef][PubMed]
    [Google Scholar]
  48. Ye Q., Krug R. M., Tao Y. J.. ( 2006;). The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. . Nature 444:, 1078–1082. [CrossRef][PubMed]
    [Google Scholar]
  49. Zuo Y., Zheng H., Wang Y., Chruszcz M., Cymborowski M., Skarina T., Savchenko A., Malhotra A., Minor W.. ( 2007;). Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. . Structure 15:, 417–428. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.055053-0
Loading
/content/journal/jgv/10.1099/vir.0.055053-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error