1887

Abstract

Coronaviruses demonstrate great potential for interspecies transmission, including zoonotic outbreaks. Although bovine coronavirus (BCoV) strains are frequently circulating in cattle farms worldwide, causing both enteric and respiratory disease, little is known about their genomic evolution. We sequenced and analysed the full-length spike (S) protein gene of 33 BCoV strains from dairy and feedlot farms collected during outbreaks that occurred from 2002 to 2010 in Sweden and Denmark. Amino acid identities were >97 % for the BCoV strains analysed in this work. These strains formed a clade together with Italian BCoV strains and were highly similar to human enteric coronavirus HECV-4408/US/94. A high similarity was observed between BCoV, canine respiratory coronavirus (CRCoV) and human coronavirus OC43 (HCoV-OC43). Molecular clock analysis of the S gene sequences estimated BCoV and CRCoV diverged from a common ancestor in 1951, while the time of divergence from a common ancestor of BCoV and HCoV-OC43 was estimated to be 1899. BCoV strains showed the lowest similarity to equine coronavirus, placing the date of divergence at the end of the eighteenth century. Two strongly positive selection sites were detected along the receptor-binding subunit of the S protein gene: spanning amino acid residues 109–131 and 495–527. By contrast, the fusion subunit was observed to be under negative selection. The selection pattern along the S glycoprotein implies adaptive evolution of BCoVs, suggesting a successful mechanism for BCoV to continuously circulate among cattle and other ruminants without disappearance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054940-0
2013-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/9/2036.html?itemId=/content/journal/jgv/10.1099/vir.0.054940-0&mimeType=html&fmt=ahah

References

  1. Abraham S., Kienzle T. E., Lapps W., Brian D. A.. ( 1990; ). Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. . Virology 176:, 296–301. [CrossRef] [PubMed]
    [Google Scholar]
  2. Al-Ahdal M. N., Al-Qahtani A. A., Rubino S.. ( 2012; ). Coronavirus respiratory illness in Saudi Arabia. . J Infect Dev Ctries 6:, 692–694. [CrossRef] [PubMed]
    [Google Scholar]
  3. Alekseev K. P., Vlasova A. N., Jung K., Hasoksuz M., Zhang X., Halpin R., Wang S., Ghedin E., Spiro D., Saif L. J.. ( 2008; ). Bovine-like coronaviruses isolated from four species of captive wild ruminants are homologous to bovine coronaviruses, based on complete genomic sequences. . J Virol 82:, 12422–12431. [CrossRef] [PubMed]
    [Google Scholar]
  4. Alenius S., Niskanen R., Juntti N., Larsson B.. ( 1991; ). Bovine coronavirus as the causative agent of winter dysentery: serological evidence. . Acta Vet Scand 32:, 163–170.[PubMed]
    [Google Scholar]
  5. Apweiler R., Attwood T. K., Bairoch A., Bateman A., Birney E., Biswas M., Bucher P., Cerutti L., Corpet F.. & other authors ( 2001; ). The InterPro database, an integrated documentation resource for protein families, domains and functional sites. . Nucleic Acids Res 29:, 37–40. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bidokhti M. R., Tråvén M., Ohlson A., Baule C., Hakhverdyan M., Belák S., Liu L., Alenius S.. ( 2012; ). Tracing the transmission of bovine coronavirus infections in cattle herds based on S gene diversity. . Vet J 193:, 386–390. [CrossRef] [PubMed]
    [Google Scholar]
  7. Borucki M. K., Allen J. E., Chen-Harris H., Zemla A., Vanier G., Mabery S., Torres C., Hullinger P., Slezak T.. ( 2013; ). The role of viral population diversity in adaptation of bovine coronavirus to new host environments. . PLoS ONE 8:, e52752. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cavanagh D.. ( 1997; ). Nidovirales: a new order comprising Coronaviridae and Arteriviridae . . Arch Virol 142:, 629–633.[PubMed]
    [Google Scholar]
  9. Cho K. O., Hoet A. E., Loerch S. C., Wittum T. E., Saif L. J.. ( 2001; ). Evaluation of concurrent shedding of bovine coronavirus via the respiratory tract and enteric route in feedlot cattle. . Am J Vet Res 62:, 1436–1441. [CrossRef] [PubMed]
    [Google Scholar]
  10. Clark M. A.. ( 1993; ). Bovine coronavirus. . Br Vet J 149:, 51–70. [CrossRef] [PubMed]
    [Google Scholar]
  11. de Groot R. J., Baker S. C., Baric R., Enjuanes L., Gorbalenya A. E., Holmes K. V., Perlman S., Poon L. L., Rottier P. J. M.. & other authors ( 2012; ). Coronaviridae . . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 806–828. Edited by King A. M., Lefkowitz E., Adams M. J., Carstens E. B... Oxford, UK:: Elsevier Inc;.
    [Google Scholar]
  12. Decaro N., Campolo M., Desario C., Cirone F., D’Abramo M., Lorusso E., Greco G., Mari V., Colaianni M. L.. & other authors ( 2008a; ). Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy. . J Vet Diagn Invest 20:, 28–32. [CrossRef] [PubMed]
    [Google Scholar]
  13. Decaro N., Mari V., Desario C., Campolo M., Elia G., Martella V., Greco G., Cirone F., Colaianni M. L.. & other authors ( 2008b; ). Severe outbreak of bovine coronavirus infection in dairy cattle during the warmer season. . Vet Microbiol 126:, 30–39. [CrossRef] [PubMed]
    [Google Scholar]
  14. Decaro N., Martella V., Elia G., Campolo M., Mari V., Desario C., Lucente M. S., Lorusso A., Greco G.. & other authors ( 2008c; ). Biological and genetic analysis of a bovine-like coronavirus isolated from water buffalo (Bubalus bubalis) calves. . Virology 370:, 213–222. [CrossRef] [PubMed]
    [Google Scholar]
  15. Deregt D., Babiuk L. A.. ( 1987; ). Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. . Virology 161:, 410–420. [CrossRef] [PubMed]
    [Google Scholar]
  16. Donker N. C., Kirkwood C. D.. ( 2012; ). Selection and evolutionary analysis in the nonstructural protein NSP2 of rotavirus A. . Infect Genet Evol 12:, 1355–1361. [CrossRef] [PubMed]
    [Google Scholar]
  17. Drummond A. J., Rambaut A.. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  18. Erles K., Shiu K. B., Brownlie J.. ( 2007; ). Isolation and sequence analysis of canine respiratory coronavirus. . Virus Res 124:, 78–87. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fulton R. W., Step D. L., Wahrmund J., Burge L. J., Payton M. E., Cook B. J., Burken D., Richards C. J., Confer A. W.. ( 2011; ). Bovine coronavirus (BCV) infections in transported commingled beef cattle and sole-source ranch calves. . Can J Vet Res 75:, 191–199.[PubMed]
    [Google Scholar]
  20. Fulton R. W., Ridpath J. F., Burge L. J.. ( 2013; ). Bovine coronaviruses from the respiratory tract: antigenic and genetic diversity. . Vaccine 31:, 886–892. [CrossRef] [PubMed]
    [Google Scholar]
  21. Groneberg D. A., Zhang L., Welte T., Zabel P., Chung K. F.. ( 2003; ). Severe acute respiratory syndrome: global initiatives for disease diagnosis. . QJM 96:, 845–852. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hall T. A.. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  23. Han M. G., Cheon D. S., Zhang X., Saif L. J.. ( 2006; ). Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. . J Virol 80:, 12350–12356. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hasoksuz M., Sreevatsan S., Cho K. O., Hoet A. E., Saif L. J.. ( 2002; ). Molecular analysis of the S1 subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. . Virus Res 84:, 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  25. Jeong J. H., Kim G. Y., Yoon S. S., Park S. J., Kim Y. J., Sung C. M., Shin S. S., Lee B. J., Kang M. I.. & other authors ( 2005; ). Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002–2003. . Virus Res 108:, 207–212. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kanno T., Ishihara R., Hatama S., Uchida I.. ( 2013; ). Antigenic variation among recent Japanese isolates of bovine coronaviruses belonging to phylogenetically distinct genetic groups. . Arch Virol 158:, 1047–1053. [CrossRef] [PubMed]
    [Google Scholar]
  27. Korber B.. ( 2000; ). HIV signature and sequence variation analysis. . In Computational Analysis of HIV Molecular Sequences, pp. 55–72. Edited by Rodrigo A. G., Learn G. H... Dordrecht, Netherlands:: Kluwer Academic Publishers;.
    [Google Scholar]
  28. Lathrop S. L., Wittum T. E., Loerch S. C., Perino L. J., Saif L. J.. ( 2000; ). Antibody titers against bovine coronavirus and shedding of the virus via the respiratory tract in feedlot cattle. . Am J Vet Res 61:, 1057–1061. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lau S. K., Lee P., Tsang A. K., Yip C. C., Tse H., Lee R. A., So L. Y., Lau Y. L., Chan K. H.. & other authors ( 2011; ). Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. . J Virol 85:, 11325–11337. [CrossRef] [PubMed]
    [Google Scholar]
  30. Li F.. ( 2012; ). Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. . J Virol 86:, 2856–2858. [CrossRef] [PubMed]
    [Google Scholar]
  31. Liu L., Hägglund S., Hakhverdyan M., Alenius S., Larsen L. E., Belák S.. ( 2006; ). Molecular epidemiology of bovine coronavirus on the basis of comparative analyses of the S gene. . J Clin Microbiol 44:, 957–960. [CrossRef] [PubMed]
    [Google Scholar]
  32. Martínez N., Brandão P. E., de Souza S. P., Barrera M., Santana N., de Arce H. D., Pérez L. J.. ( 2012; ). Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene. . Infect Genet Evol 12:, 1870–1878. [CrossRef] [PubMed]
    [Google Scholar]
  33. Mebus C. A., Stair E. L., Rhodes M. B., Twiehaus M. J.. ( 1973; ). Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus-like agent. . Am J Vet Res 34:, 145–150.[PubMed]
    [Google Scholar]
  34. Ohlson A., Heuer C., Lockhart C., Tråvén M., Emanuelson U., Alenius S.. ( 2010; ). Risk factors for seropositivity to bovine coronavirus and bovine respiratory syncytial virus in dairy herds. . Vet Rec 167:, 201–206. [CrossRef] [PubMed]
    [Google Scholar]
  35. Olvera A., Cortey M., Segalés J.. ( 2007; ). Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality. . Virology 357:, 175–185. [CrossRef] [PubMed]
    [Google Scholar]
  36. Park S. J., Jeong C., Yoon S. S., Choy H. E., Saif L. J., Park S. H., Kim Y. J., Jeong J. H., Park S. I.. & other authors ( 2006; ). Detection and characterization of bovine coronaviruses in fecal specimens of adult cattle with diarrhea during the warmer seasons. . J Clin Microbiol 44:, 3178–3188. [CrossRef] [PubMed]
    [Google Scholar]
  37. Parker M. D., Yoo D., Cox G. J., Babiuk L. A.. ( 1990; ). Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells. . J Gen Virol 71:, 263–270. [CrossRef] [PubMed]
    [Google Scholar]
  38. Paton D. J., Christiansen K. H., Alenius S., Cranwell M. P., Pritchard G. C., Drew T. W.. ( 1998; ). Prevalence of antibodies to bovine virus diarrhoea virus and other viruses in bulk tank milk in England and Wales. . Vet Rec 142:, 385–391. [CrossRef] [PubMed]
    [Google Scholar]
  39. Peng G., Xu L., Lin Y. L., Chen L., Pasquarella J. R., Holmes K. V., Li F.. ( 2012; ). Crystal structure of bovine coronavirus spike protein lectin domain. . J Biol Chem 287:, 41931–41938. [CrossRef] [PubMed]
    [Google Scholar]
  40. Pond S. L. K., Frost S. D. W.. ( 2005; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. . Bioinformatics 21:, 2531–2533. [CrossRef] [PubMed]
    [Google Scholar]
  41. Rambaut A., Drummond A. J.. ( 2007; ). Tracer v1.4: MCMC trace analyses tool. . Available: http://beast.bio.ed.ac.uk/Tracer. Accessed 20 June 2008.
    [Google Scholar]
  42. Rekik M. R., Dea S.. ( 1994; ). Comparative sequence analysis of a polymorphic region of the spike glycoprotein S1 subunit of enteric bovine coronavirus isolates. . Arch Virol 135:, 319–331. [CrossRef] [PubMed]
    [Google Scholar]
  43. Saif L. J.. ( 2010; ). Bovine respiratory coronavirus. . Vet Clin North Am Food Anim Pract 26:, 349–364. [CrossRef] [PubMed]
    [Google Scholar]
  44. Saif L. J., Redman D. R., Brock K. V., Kohler E. M., Heckert R. A.. ( 1988; ). Winter dysentery in adult dairy cattle: detection of coronavirus in the faeces. . Vet Rec 123:, 300–301. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sall A. A., Faye O., Diallo M., Firth C., Kitchen A., Holmes E. C.. ( 2010; ). Yellow fever virus exhibits slower evolutionary dynamics than dengue virus. . J Virol 84:, 765–772. [CrossRef] [PubMed]
    [Google Scholar]
  46. Schultze B., Gross H. J., Brossmer R., Herrler G.. ( 1991; ). The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. . J Virol 65:, 6232–6237.[PubMed]
    [Google Scholar]
  47. Shangjin C., Cortey M., Segalés J.. ( 2009; ). Phylogeny and evolution of the NS1 and VP1/VP2 gene sequences from porcine parvovirus. . Virus Res 140:, 209–215. [CrossRef] [PubMed]
    [Google Scholar]
  48. Smith D. R., Fedorka-Cray P. J., Mohan R., Brock K. V., Wittum T. E., Morley P. S., Hoblet K. H., Saif L. J.. ( 1998; ). Epidemiologic herd-level assessment of causative agents and risk factors for winter dysentery in dairy cattle. . Am J Vet Res 59:, 994–1001.[PubMed]
    [Google Scholar]
  49. Storz J., Rott R., Kaluza G.. ( 1981; ). Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment. . Infect Immun 31:, 1214–1222.[PubMed]
    [Google Scholar]
  50. Suchard M. A., Weiss R. E., Sinsheimer J. S.. ( 2001; ). Bayesian selection of continuous-time Markov chain evolutionary models. . Mol Biol Evol 18:, 1001–1013. [CrossRef] [PubMed]
    [Google Scholar]
  51. Supekar V. M., Bruckmann C., Ingallinella P., Bianchi E., Pessi A., Carfí A.. ( 2004; ). Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. . Proc Natl Acad Sci U S A 101:, 17958–17963. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega 5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  53. Tråvén M., Näslund K., Linde N., Linde B., Silván A., Fossum C., Hedlund K. O., Larsson B.. ( 2001; ). Experimental reproduction of winter dysentery in lactating cows using BCV – comparison with BCV infection in milk-fed calves. . Vet Microbiol 81:, 127–151. [CrossRef] [PubMed]
    [Google Scholar]
  54. Tsunemitsu H., el-Kanawati Z. R., Smith D. R., Reed H. H., Saif L. J.. ( 1995; ). Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea. . J Clin Microbiol 33:, 3264–3269.[PubMed]
    [Google Scholar]
  55. Vautherot J. F., Laporte J., Boireau P.. ( 1992a; ). Bovine coronavirus spike glycoprotein: localization of an immunodominant region at the amino-terminal end of S2. . J Gen Virol 73:, 3289–3294. [CrossRef] [PubMed]
    [Google Scholar]
  56. Vautherot J. F., Madelaine M. F., Boireau P., Laporte J.. ( 1992b; ). Bovine coronavirus peplomer glycoproteins: detailed antigenic analyses of S1, S2 and HE. . J Gen Virol 73:, 1725–1737. [CrossRef] [PubMed]
    [Google Scholar]
  57. Vijgen L., Keyaerts E., Lemey P., Moës E., Li S., Vandamme A. M., Van Ranst M.. ( 2005a; ). Circulation of genetically distinct contemporary human coronavirus OC43 strains. . Virology 337:, 85–92. [CrossRef] [PubMed]
    [Google Scholar]
  58. Vijgen L., Keyaerts E., Moës E., Thoelen I., Wollants E., Lemey P., Vandamme A. M., Van Ranst M.. ( 2005b; ). Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. . J Virol 79:, 1595–1604. [CrossRef] [PubMed]
    [Google Scholar]
  59. Vijgen L., Keyaerts E., Lemey P., Maes P., Van Reeth K., Nauwynck H., Pensaert M., Van Ranst M.. ( 2006; ). Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. . J Virol 80:, 7270–7274. [CrossRef] [PubMed]
    [Google Scholar]
  60. Wong S. K., Li W., Moore M. J., Choe H., Farzan M.. ( 2004; ). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. . J Biol Chem 279:, 3197–3201. [CrossRef] [PubMed]
    [Google Scholar]
  61. Woo P. C., Lau S. K., Yip C. C., Huang Y., Tsoi H. W., Chan K. H., Yuen K. Y.. ( 2006; ). Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. . J Virol 80:, 7136–7145. [CrossRef] [PubMed]
    [Google Scholar]
  62. Woo P. C., Lau S. K., Lam C. S., Lau C. C., Tsang A. K., Lau J. H., Bai R., Teng J. L., Tsang C. C.. & other authors ( 2012; ). Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus . . J Virol 86:, 3995–4008. [CrossRef] [PubMed]
    [Google Scholar]
  63. Yang Z.. ( 2005; ). The power of phylogenetic comparison in revealing protein function. . Proc Natl Acad Sci U S A 102:, 3179–3180. [CrossRef] [PubMed]
    [Google Scholar]
  64. Yoo D., Deregt D.. ( 2001; ). A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. . Clin Diagn Lab Immunol 8:, 297–302.[PubMed]
    [Google Scholar]
  65. Yoo D. W., Parker M. D., Babiuk L. A.. ( 1991a; ). The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. . Virology 180:, 395–399. [CrossRef] [PubMed]
    [Google Scholar]
  66. Yoo D. W., Parker M. D., Song J., Cox G. J., Deregt D., Babiuk L. A.. ( 1991b; ). Structural analysis of the conformational domains involved in neutralization of bovine coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. . Virology 183:, 91–98. [CrossRef] [PubMed]
    [Google Scholar]
  67. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A.. ( 2012; ). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. . N Engl J Med 367:, 1814–1820. [CrossRef] [PubMed]
    [Google Scholar]
  68. Zhang Y.. ( 2008; ). i-tasser server for protein 3D structure prediction. . BMC Bioinformatics 9:, 40. [CrossRef] [PubMed]
    [Google Scholar]
  69. Zhang Y., Skolnick J.. ( 2004a; ). Automated structure prediction of weakly homologous proteins on a genomic scale. . Proc Natl Acad Sci U S A 101:, 7594–7599. [CrossRef] [PubMed]
    [Google Scholar]
  70. Zhang Y., Skolnick J.. ( 2004b; ). spicker: a clustering approach to identify near-native protein folds. . J Comput Chem 25:, 865–871. [CrossRef] [PubMed]
    [Google Scholar]
  71. Zhang X. M., Herbst W., Kousoulas K. G., Storz J.. ( 1994; ). Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. . J Med Virol 44:, 152–161. [CrossRef] [PubMed]
    [Google Scholar]
  72. Zhong N. S., Wong G. W.. ( 2004; ). Epidemiology of severe acute respiratory syndrome (SARS): adults and children. . Paediatr Respir Rev 5:, 270–274. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054940-0
Loading
/content/journal/jgv/10.1099/vir.0.054940-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error