1887

Abstract

Measles virus (MV), a member of the family , remains a major cause of morbidity and mortality in the developing world. MV is spread by aerosols but the mechanism(s) responsible for the high transmissibility of MV are largely unknown. We previously infected macaques with enhanced green fluorescent protein-expressing recombinant MV and euthanized them at a range of time points. In this study a comprehensive pathological analysis has been performed of tissues from the respiratory tract around the peak of virus replication. Isolation of virus from nose and throat swab samples showed that high levels of both cell-associated and cell-free virus were present in the upper respiratory tract. Analysis of tissue sections from lung and primary bronchus revealed localized infection of epithelial cells, concomitant infiltration of MV-infected immune cells into the epithelium and localized shedding of cells or cell debris into the lumen. While high numbers of MV-infected cells were present in the tongue, these were largely encapsulated by intact keratinocyte cell layers that likely limit virus transmission. In contrast, the integrity of tonsillar and adenoidal epithelia was disrupted with high numbers of MV-infected epithelial cells and infiltrating immune cells present throughout epithelial cell layers. Disruption was associated with large numbers of MV-infected cells or cell debris ‘spilling’ from epithelia into the respiratory tract. The coughing and sneezing response induced by disruption of the ciliated epithelium, leading to the expulsion of MV-infected cells, cell debris and cell-free virus, contributes to the highly infectious nature of MV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054650-0
2013-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/9/1933.html?itemId=/content/journal/jgv/10.1099/vir.0.054650-0&mimeType=html&fmt=ahah

References

  1. Anderson R. M., May R. M.. ( 1982; ). Directly transmitted infections diseases: control by vaccination. . Science 215:, 1053–1060. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bloch A. B., Orenstein W. A., Ewing W. M., Spain W. H., Mallison G. F., Herrmann K. L., Hinman A. R.. ( 1985; ). Measles outbreak in a pediatric practice: airborne transmission in an office setting. . Pediatrics 75:, 676–683.[PubMed]
    [Google Scholar]
  3. Carrillo-Santisteve P., Lopalco P. L.. ( 2012; ). Measles still spreads in Europe: who is responsible for the failure to vaccinate?. Clin Microbiol Infect 18: (Suppl 5), 50–56. [CrossRef] [PubMed]
    [Google Scholar]
  4. Choi Y. K., Simon M. A., Kim D. Y., Yoon B. I., Kwon S. W., Lee K. W., Seo I. B., Kim D. Y.. ( 1999; ). Fatal measles virus infection in Japanese macaques (Macaca fuscata). . Vet Pathol 36:, 594–600. [CrossRef] [PubMed]
    [Google Scholar]
  5. Christensen P. E., Schmidt H., Bang H. O., Andersen V., Jordal B., Jensen O.. ( 1953; ). An epidemic of measles in southern Greenland, 1951; measles in virgin soil. II. The epidemic proper. . Acta Med Scand 144:, 430–449. [CrossRef] [PubMed]
    [Google Scholar]
  6. Coleman K. P., Markey P. G.. ( 2010; ). Measles transmission in immunized and partially immunized air travellers. . Epidemiol Infect 138:, 1012–1015. [CrossRef] [PubMed]
    [Google Scholar]
  7. De Jong J. G., Winkler K. C.. ( 1964; ). Survival of measles virus in air. . Nature 201:, 1054–1055. [CrossRef] [PubMed]
    [Google Scholar]
  8. de Swart R. L., Ludlow M., de Witte L., Yanagi Y., van Amerongen G., McQuaid S., Yüksel S., Geijtenbeek T. B., Duprex W. P., Osterhaus A. D.. ( 2007; ). Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. . PLoS Pathog 3:, e178. [CrossRef] [PubMed]
    [Google Scholar]
  9. de Vries R. D., Lemon K., Ludlow M., McQuaid S., Yüksel S., van Amerongen G., Rennick L. J., Rima B. K., Osterhaus A. D.. & other authors ( 2010a; ). In vivo tropism of attenuated and pathogenic measles virus expressing green fluorescent protein in macaques. . J Virol 84:, 4714–4724. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Vries R. D., Yüksel S., Osterhaus A. D., de Swart R. L.. ( 2010b; ). Specific CD8(+) T-lymphocytes control dissemination of measles virus. . Eur J Immunol 40:, 388–395. [CrossRef] [PubMed]
    [Google Scholar]
  11. de Vries R. D., McQuaid S., van Amerongen G., Yüksel S., Verburgh R. J., Osterhaus A. D., Duprex W. P., de Swart R. L.. ( 2012; ). Measles immune suppression: lessons from the macaque model. . PLoS Pathog 8:, e1002885. [CrossRef] [PubMed]
    [Google Scholar]
  12. Eccles R.. ( 2005; ). Understanding the symptoms of the common cold and influenza. . Lancet Infect Dis 5:, 718–725. [CrossRef] [PubMed]
    [Google Scholar]
  13. Edelson P. J.. ( 2012; ). Patterns of measles transmission among airplane travelers. . Travel Med Infect Dis 10:, 230–235. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ehresmann K. R., Hedberg C. W., Grimm M. B., Norton C. A., MacDonald K. L., Osterholm M. T.. ( 1995; ). An outbreak of measles at an international sporting event with airborne transmission in a domed stadium. . J Infect Dis 171:, 679–683. [CrossRef] [PubMed]
    [Google Scholar]
  15. el Mubarak H. S., Van De Bildt M. W., Mustafa O. A., Vos H. W., Mukhtar M. M., Groen J., el Hassan A. M., Niesters H. G., Ibrahim S. A.. & other authors ( 2000; ). Serological and virological characterization of clinically diagnosed cases of measles in suburban Khartoum. . J Clin Microbiol 38:, 987–991.[PubMed]
    [Google Scholar]
  16. Enders J. F., McCarthy K., Mitus A., Cheatham W. J.. ( 1959; ). Isolation of measles virus at autopsy in cases of giant-cell pneumonia without rash. . N Engl J Med 261:, 875–881. [CrossRef] [PubMed]
    [Google Scholar]
  17. Frenzke M., Sawatsky B., Wong X. X., Delpeut S., Mateo M., Cattaneo R., von Messling V.. ( 2013; ). Nectin-4-dependent measles virus spread to the cynomolgus monkey tracheal epithelium: role of infected immune cells infiltrating the lamina propria. . J Virol 87:, 2526–2534. [CrossRef] [PubMed]
    [Google Scholar]
  18. Fulton R. E., Middleton P. J.. ( 1975; ). Immunofluorescence in diagnosis of measles infections in children. . J Pediatr 86:, 17–22. [CrossRef] [PubMed]
    [Google Scholar]
  19. Griffin D. E.. ( 2007; ). Measles virus. . In Fields Virology, , 5th edn., pp. 1551–1585. Edited by Knipe D. M., Howley P. M... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  20. Hashimoto K., Ono N., Tatsuo H., Minagawa H., Takeda M., Takeuchi K., Yanagi Y.. ( 2002; ). SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. . J Virol 76:, 6743–6749. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hektoen L.. ( 1905; ). Experimental measles. . J Infect Dis 2:, 238–255. [CrossRef]
    [Google Scholar]
  22. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., Sorrell E. M., Bestebroer T. M., Burke D. F.. & other authors ( 2012; ). Airborne transmission of influenza A/H5N1 virus between ferrets. . Science 336:, 1534–1541. [CrossRef] [PubMed]
    [Google Scholar]
  23. Herrman C.. ( 1915; ). The tonsillar manifestations in the early diagnosis of measles. . Am J Dis Child 10:, 274–277.
    [Google Scholar]
  24. Home F.. ( 1759; ). Medical Facts and Experiments. London:: A. Millar;.
    [Google Scholar]
  25. Imai M., Watanabe T., Hatta M., Das S. C., Ozawa M., Shinya K., Zhong G., Hanson A., Katsura H.. & other authors ( 2012; ). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. . Nature 486:, 420–428.[PubMed]
    [Google Scholar]
  26. John D. G., Thomas P. L., Semeraro D.. ( 1988; ). Tonsillar haemorrhage and measles. . J Laryngol Otol 102:, 64–66. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kobune F., Sakata H., Sugiura A.. ( 1990; ). Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. . J Virol 64:, 700–705.[PubMed]
    [Google Scholar]
  28. Koplik H.. ( 1896; ). The diagnosis of the invasion of measles from a study of the exanthema as it appears on the buccal mucous membrane. . Arch Pediatr 13:, 918–922. [CrossRef]
    [Google Scholar]
  29. Lemon K., de Vries R. D., Mesman A. W., McQuaid S., van Amerongen G., Yüksel S., Ludlow M., Rennick L. J., Kuiken T.. & other authors ( 2011; ). Early target cells of measles virus after aerosol infection of non-human primates. . PLoS Pathog 7:, e1001263. [CrossRef] [PubMed]
    [Google Scholar]
  30. Leonard V. H., Sinn P. L., Hodge G., Miest T., Devaux P., Oezguen N., Braun W., McCray P. B. Jr, McChesney M. B., Cattaneo R.. ( 2008; ). Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. . J Clin Invest 118:, 2448–2458.[PubMed]
    [Google Scholar]
  31. Lightwood R., Nolan R., Franco M., White A. J. S.. ( 1970; ). Epithelial giant cells in measles as an aid in diagnosis. . J Pediatr 77:, 59–64. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lloyd-Smith J. O., Schreiber S. J., Kopp P. E., Getz W. M.. ( 2005; ). Superspreading and the effect of individual variation on disease emergence. . Nature 438:, 355–359. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ludlow M., Rennick L. J., Sarlang S., Skibinski G., McQuaid S., Moore T., de Swart R. L., Duprex W. P.. ( 2010; ). Wild-type measles virus infection of primary epithelial cells occurs via the basolateral surface without syncytium formation or release of infectious virus. . J Gen Virol 91:, 971–979. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ludlow M., Lemon K., de Vries R. D., McQuaid S., Millar E. L., van Amerongen G., Yüksel S., Verburgh R. J., Osterhaus A. D.. & other authors ( 2013; ). Measles virus infection of epithelial cells in the macaque upper respiratory tract is mediated by subepithelial immune cells. . J Virol 87:, 4033–4042. [CrossRef] [PubMed]
    [Google Scholar]
  35. MacArthur J. A., Mann P. G., Oreffo V., Scott G. B. D.. ( 1979; ). Measles in monkeys: an epidemiological study. . J Hyg (Lond) 83:, 207–212. [CrossRef] [PubMed]
    [Google Scholar]
  36. Mcquillin J., Bell T. M., Gardner P. S., Downham P. S.. ( 1976; ). Application of immunofluorescence to a study of measles. . Arch Dis Child 51:, 411–419. [CrossRef] [PubMed]
    [Google Scholar]
  37. Moss W. J., Griffin D. E.. ( 2006; ). Global measles elimination. . Nat Rev Microbiol 4:, 900–908. [CrossRef] [PubMed]
    [Google Scholar]
  38. Moss W. J., Griffin D. E.. ( 2012; ). Measles. . Lancet 379:, 153–164. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mühlebach M. D., Mateo M., Sinn P. L., Prüfer S., Uhlig K. M., Leonard V. H., Navaratnarajah C. K., Frenzke M., Wong X. X.. & other authors ( 2011; ). Adherens junction protein nectin-4 is the epithelial receptor for measles virus. . Nature 480:, 530–533.[PubMed]
    [Google Scholar]
  40. Noyce R. S., Bondre D. G., Ha M. N., Lin L. T., Sisson G., Tsao M. S., Richardson C. D.. ( 2011; ). Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. . PLoS Pathog 7:, e1002240. [CrossRef] [PubMed]
    [Google Scholar]
  41. Panum P. L.. ( 1939; ). Observations made during the epidemic of measles on the Faroe Islands in the year 1846. . Med Classics 3:, 839–886.
    [Google Scholar]
  42. Paunio M., Peltola H., Valle M., Davidkin I., Virtanen M., Heinonen O. P.. ( 1998; ). Explosive school-based measles outbreak: intense exposure may have resulted in high risk, even among revaccinees. . Am J Epidemiol 148:, 1103–1110. [CrossRef] [PubMed]
    [Google Scholar]
  43. Racaniello V.. ( 2011; ). Virology. An exit strategy for measles virus. . Science 334:, 1650–1651. [CrossRef] [PubMed]
    [Google Scholar]
  44. Redman J. C., Chaney G. C.. ( 1959; ). Spontaneous rupture of the tonsil from the prodromal changes of measles. . Am J Clin Pathol 31:, 436–439.[PubMed]
    [Google Scholar]
  45. Scheifele D. W., Forbes C. E.. ( 1972; ). Prolonged giant cell excretion in severe African measles. . Pediatrics 50:, 867–873.[PubMed]
    [Google Scholar]
  46. Schellmann J., Sanson J. G.. ( 1965; ). Prodromal stage of measles diagnosed at autopsy. . J Pediatr 67:, 39–45. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sinn P. L., Williams G., Vongpunsawad S., Cattaneo R., McCray P. B. Jr. ( 2002; ). Measles virus preferentially transduces the basolateral surface of well-differentiated human airway epithelia. . J Virol 76:, 2403–2409. [CrossRef] [PubMed]
    [Google Scholar]
  48. Suringa D. W., Bank L. J., Ackerman A. B.. ( 1970; ). Role of measles virus in skin lesions and Koplik’s spots. . N Engl J Med 283:, 1139–1142. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tahara M., Takeda M., Shirogane Y., Hashiguchi T., Ohno S., Yanagi Y.. ( 2008; ). Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. . J Virol 82:, 4630–4637. [CrossRef] [PubMed]
    [Google Scholar]
  50. Takeuchi K., Miyajima N., Nagata N., Takeda M., Tashiro M.. ( 2003; ). Wild-type measles virus induces large syncytium formation in primary human small airway epithelial cells by a SLAM(CD150)-independent mechanism. . Virus Res 94:, 11–16. [CrossRef] [PubMed]
    [Google Scholar]
  51. Tatsuo H., Ono N., Tanaka K., Yanagi Y.. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. . Nature 406:, 893–897. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tompkins V., Macaulay J. C.. ( 1955; ). A characteristic cell in nasal secretions during prodromal measles. . J Am Med Assoc 157:, 711. [CrossRef] [PubMed]
    [Google Scholar]
  53. Warthin A. S.. ( 1931; ). Occurrence of numerous large giant cells in the tonsils and pharyngeal mucosa in the prodromal stage of measles. . Arch Pathol (Chic) 11:, 864–874.
    [Google Scholar]
  54. Widdicombe J. G.. ( 1995; ). Neurophysiology of the cough reflex. . Eur Respir J 8:, 1193–1202. [CrossRef] [PubMed]
    [Google Scholar]
  55. Willy M. E., Woodward R. A., Thornton V. B., Wolff A. V., Flynn B. M., Heath J. L., Villamarzo Y. S., Smith S., Bellini W. J., Rota P. A.. ( 1999; ). Management of a measles outbreak among Old World nonhuman primates. . Lab Anim Sci 49:, 42–48.[PubMed]
    [Google Scholar]
  56. Woolhouse M. E., Dye C., Etard J. F., Smith T., Charlwood J. D., Garnett G. P., Hagan P., Hii J. L., Ndhlovu P. D.. & other authors ( 1997; ). Heterogeneities in the transmission of infectious agents: implications for the design of control programs. . Proc Natl Acad Sci U S A 94:, 338–342. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054650-0
Loading
/content/journal/jgv/10.1099/vir.0.054650-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error