1887

Abstract

Viral infection is a challenge in high-density aquaculture, as it leads to various diseases and causes massive or even complete loss. The identification and disruption of host factors that viruses utilize for infection offer a novel approach to generate viral-resistant seed stocks for cost-efficient and sustainable aquaculture. Genetic screening in haploid cell cultures represents an ideal tool for host factor identification. We have recently generated haploid embryonic stem (ES) cells in the laboratory fish medaka. Here, we report that HX1, one of the three established medaka haploid ES cell lines, was susceptible to the viruses tested and is thus suitable for genetic screening to identify host factors. HX1 cells displayed a cytopathic effect and massive death upon inoculation with three highly infectious and notifiable fish viruses, namely Singapore grouper iridovirus (SGIV), spring viremia of carp virus (SVCV) and red-spotted grouper nervous necrosis virus (RGNNV). Reverse transcription-PCR and Western blot analyses revealed the expression of virus genes. SGIV infection in HX1 cells elicited a host immune response and apoptosis. Viral replication kinetics were determined from a virus growth curve, and electron microscopy revealed propagation, assembly and release of infectious SGIV particles in HX1 cells. Our results demonstrate that medaka haploid ES cells are susceptible to SGIV, as well as to SVCV and RGNNV, offering a unique opportunity for the identification of host factors by genetic screening.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054460-0
2013-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/10/2352.html?itemId=/content/journal/jgv/10.1099/vir.0.054460-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Sumiyoshi K., Ariyasu R., Yamashita K., Zenke K., Okinaka Y.. ( 2010;). Susceptibilities of medaka (Oryzias latipes) cell lines to a betanodavirus. . Virol J 7:, 150. [CrossRef][PubMed]
    [Google Scholar]
  2. Carette J. E., Guimaraes C. P., Varadarajan M., Park A. S., Wuethrich I., Godarova A., Kotecki M., Cochran B. H., Spooner E.. & other authors ( 2009;). Haploid genetic screens in human cells identify host factors used by pathogens. . Science 326:, 1231–1235. [CrossRef][PubMed]
    [Google Scholar]
  3. Carette J. E., Guimaraes C. P., Wuethrich I., Blomen V. A., Varadarajan M., Sun C., Bell G., Yuan B., Muellner M. K.. & other authors ( 2011a;). Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. . Nat Biotechnol 29:, 542–546. [CrossRef][PubMed]
    [Google Scholar]
  4. Carette J. E., Raaben M., Wong A. C., Herbert A. S., Obernosterer G., Mulherkar N., Kuehne A. I., Kranzusch P. J., Griffin A. M.. & other authors ( 2011b;). Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. . Nature 477:, 340–343. [CrossRef][PubMed]
    [Google Scholar]
  5. FAO ( 2008;). State of World Fisheries and Aquaculture. Rome:: Food and Agricultural Organisation of the United Nations;.
    [Google Scholar]
  6. FAO ( 2009;). Fishstat Plus. Rome:: Food and Agricultural Organisation of the United Nations;.
    [Google Scholar]
  7. Furusawa R., Okinaka Y., Nakai T.. ( 2006;). Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes). . J Gen Virol 87:, 2333–2339. [CrossRef][PubMed]
    [Google Scholar]
  8. Hong Y., Schartl M.. ( 2006;). Isolation and differentiation of medaka embryonic stem cells. . Methods Mol Biol 329:, 3–16.[PubMed]
    [Google Scholar]
  9. Hong Y., Winkler C., Schartl M.. ( 1996;). Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). . Mech Dev 60:, 33–44. [CrossRef][PubMed]
    [Google Scholar]
  10. Hong Y., Liu T., Zhao H., Xu H., Wang W., Liu R., Chen T., Deng J., Gui J.. ( 2004;). Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. . Proc Natl Acad Sci U S A 101:, 8011–8016. [CrossRef][PubMed]
    [Google Scholar]
  11. Hong N., Li M., Zeng Z., Yi M., Deng J., Gui J., Winkler C., Schartl M., Hong Y.. ( 2010;). Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos. . Cell Mol Life Sci 67:, 1189–1202. [CrossRef][PubMed]
    [Google Scholar]
  12. Huang X., Huang Y., Ouyang Z., Qin Q.. ( 2011a;). Establishment of a cell line from the brain of grouper (Epinephelus akaara) for cytotoxicity testing and virus pathogenesis. . Aquaculture 311:, 65–73. [CrossRef][PubMed]
    [Google Scholar]
  13. Huang X., Huang Y., Ouyang Z., Xu L., Yan Y., Cui H., Han X., Qin Q.. ( 2011b;). Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling. . Apoptosis 16:, 831–845. [CrossRef][PubMed]
    [Google Scholar]
  14. Kasahara M., Naruse K., Sasaki S., Nakatani Y., Qu W., Ahsan B., Yamada T., Nagayasu Y., Doi K.. & other authors ( 2007;). The medaka draft genome and insights into vertebrate genome evolution. . Nature 447:, 714–719. [CrossRef][PubMed]
    [Google Scholar]
  15. Kotecki M., Reddy P. S., Cochran B. H.. ( 1999;). Isolation and characterization of a near-haploid human cell line. . Exp Cell Res 252:, 273–280. [CrossRef][PubMed]
    [Google Scholar]
  16. Leeb M., Wutz A.. ( 2011;). Derivation of haploid embryonic stem cells from mouse embryos. . Nature 479:, 131–134. [CrossRef][PubMed]
    [Google Scholar]
  17. Li W., Shuai L., Wan H., Dong M., Wang M., Sang L., Feng C., Luo G. Z., Li T.. & other authors ( 2012;). Androgenetic haploid embryonic stem cells produce live transgenic mice. . Nature 490:, 407–411. [CrossRef][PubMed]
    [Google Scholar]
  18. Muller H. J.. ( 1927;). Artificial Transmutation of the Gene. . Science 66:, 84–87. [CrossRef][PubMed]
    [Google Scholar]
  19. Qin Q. W., Chang S. F., Ngoh-Lim G. H., Gibson-Kueh S., Shi C., Lam T. J.. ( 2003;). Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina. . Dis Aquat Organ 53:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  20. Rouiller I., Brookes S. M., Hyatt A. D., Windsor M., Wileman T.. ( 1998;). African swine fever virus is wrapped by the endoplasmic reticulum. . J Virol 72:, 2373–2387.[PubMed]
    [Google Scholar]
  21. Song W. J., Qin Q. W., Qiu J., Huang C. H., Wang F., Hew C. L.. ( 2004;). Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. . J Virol 78:, 12576–12590. [CrossRef][PubMed]
    [Google Scholar]
  22. Stockwell B. R.. ( 2002;). Chemical genetic screening approaches to neurobiology. . Neuron 36:, 559–562. [CrossRef][PubMed]
    [Google Scholar]
  23. Teng Y., Liu H., Lv J. Q., Fan W. H., Zhang Q. Y., Qin Q. W.. ( 2007;). Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China. . Arch Virol 152:, 1457–1465. [CrossRef][PubMed]
    [Google Scholar]
  24. Tran B. N., Chen L., Liu Y., Wu J., Velázquez-Campoy A., Sivaraman J., Hew C. L.. ( 2011;). Novel histone H3 binding protein ORF158L from the Singapore grouper iridovirus. . J Virol 85:, 9159–9166. [CrossRef][PubMed]
    [Google Scholar]
  25. Walker P. J., Winton J. R.. ( 2010;). Emerging viral diseases of fish and shrimp. . Vet Res 41:, 51. [CrossRef][PubMed]
    [Google Scholar]
  26. Wang F., Bi X., Chen L. M., Hew C. L.. ( 2008;). ORF018R, a highly abundant virion protein from Singapore grouper iridovirus, is involved in serine/threonine phosphorylation and virion assembly. . J Gen Virol 89:, 1169–1178. [CrossRef][PubMed]
    [Google Scholar]
  27. Xia L., Cao J., Huang X., Qin Q.. ( 2009;). Characterization of Singapore grouper iridovirus (SGIV) ORF086R, a putative homolog of ICP18 involved in cell growth control and virus replication. . Arch Virol 154:, 1409–1416. [CrossRef][PubMed]
    [Google Scholar]
  28. Xu H., Gui J., Hong Y.. ( 2005;). Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. . Dev Dyn 233:, 872–882. [CrossRef][PubMed]
    [Google Scholar]
  29. Yamanoue Y., Miya M., Inoue J. G., Matsuura K., Nishida M.. ( 2006;). The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. . Genes Genet Syst 81:, 29–39. [CrossRef][PubMed]
    [Google Scholar]
  30. Yang H., Shi L., Wang B. A., Liang D., Zhong C., Liu W., Nie Y., Liu J., Zhao J.. & other authors ( 2012;). Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. . Cell 149:, 605–617. [CrossRef][PubMed]
    [Google Scholar]
  31. Yi M., Hong N., Hong Y.. ( 2009;). Generation of medaka fish haploid embryonic stem cells. . Science 326:, 430–433. [CrossRef][PubMed]
    [Google Scholar]
  32. Yi M., Hong N., Hong Y.. ( 2010;). Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. . Nat Protoc 5:, 1418–1430. [CrossRef][PubMed]
    [Google Scholar]
  33. Yu F. F., Zhang Y. B., Liu T. K., Liu Y., Sun F., Jiang J., Gui J. F.. ( 2010;). Fish virus-induced interferon exerts antiviral function through Stat1 pathway. . Mol Immunol 47:, 2330–2341. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054460-0
Loading
/content/journal/jgv/10.1099/vir.0.054460-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error