Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence Open Access

Abstract

Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.054114-0
2013-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/9/2070.html?itemId=/content/journal/jgv/10.1099/vir.0.054114-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Tulman E. R., Lu Z., Zsak L., Sandybaev N. T., Kerembekova U. Z., Zaitsev V. L., Kutish G. F., Rock D. L. 2002; The genome of camelpox virus. Virology 295:1–9 [View Article][PubMed]
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167 [View Article][PubMed]
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69:4633–4639[PubMed]
    [Google Scholar]
  4. Alcamí A., Smith G. L. 1996; A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93:11029–11034 [View Article][PubMed]
    [Google Scholar]
  5. Alcamí A., Symons J. A., Smith G. L. 2000; The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol 74:11230–11239 [View Article][PubMed]
    [Google Scholar]
  6. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396 [View Article][PubMed]
    [Google Scholar]
  7. Aoyagi M., Zhai D., Jin C., Aleshin A. E., Stec B., Reed J. C., Liddington R. C. 2007; Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci 16:118–124 [View Article][PubMed]
    [Google Scholar]
  8. Bahar M. W., Graham S. C., Chen R. A., Cooray S., Smith G. L., Stuart D. I., Grimes J. M. 2011; How vaccinia virus has evolved to subvert the host immune response. J Struct Biol 175:127–134 [View Article][PubMed]
    [Google Scholar]
  9. Bartlett N., Symons J. A., Tscharke D. C., Smith G. L. 2002; The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976[PubMed]
    [Google Scholar]
  10. Benfield C. T. O., Ren H., Lucas S. J., Bahsoun B., Smith G. L. 2013; Vaccinia virus protein K7 is a virulence factor that alters the acute immune response to infection. J Gen Virol 94:1647–1657 [View Article][PubMed]
    [Google Scholar]
  11. Bennink J. R., Yewdell J. W., Smith G. L., Moss B. 1986; Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J Virol 57:786–791[PubMed]
    [Google Scholar]
  12. Bowie A. G., Unterholzner L. 2008; Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8:911–922 [View Article][PubMed]
    [Google Scholar]
  13. Bowie A., Kiss-Toth E., Symons J. A., Smith G. L., Dower S. K., O’Neill L. A. 2000; A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci U S A 97:10162–10167 [View Article][PubMed]
    [Google Scholar]
  14. Campbell S., Hazes B., Kvansakul M., Colman P., Barry M. 2010; Vaccinia virus F1L interacts with Bak using highly divergent Bcl-2 homology domains and replaces the function of Mcl-1. J Biol Chem 285:4695–4708 [View Article][PubMed]
    [Google Scholar]
  15. Chang H. W., Watson J. C., Jacobs B. L. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A 89:4825–4829 [View Article][PubMed]
    [Google Scholar]
  16. Chen R. A., Jacobs N., Smith G. L. 2006; Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. J Gen Virol 87:1451–1458 [View Article][PubMed]
    [Google Scholar]
  17. Chen R. A., Ryzhakov G., Cooray S., Randow F., Smith G. L. 2008; Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4:e22 [View Article][PubMed]
    [Google Scholar]
  18. Colamonici O. R., Domanski P., Sweitzer S. M., Larner A., Buller R. M. 1995; Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 270:15974–15978 [View Article][PubMed]
    [Google Scholar]
  19. Cooray S., Bahar M. W., Abrescia N. G., McVey C. E., Bartlett N. W., Chen R. A., Stuart D. I., Grimes J. M., Smith G. L. 2007; Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88:1656–1666 [View Article][PubMed]
    [Google Scholar]
  20. Cudmore S., Cossart P., Griffiths G., Way M. 1995; Actin-based motility of vaccinia virus. Nature 378:636–638 [View Article][PubMed]
    [Google Scholar]
  21. Davies M. V., Elroy-Stein O., Jagus R., Moss B., Kaufman R. J. 1992; The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 66:1943–1950[PubMed]
    [Google Scholar]
  22. DiPerna G., Stack J., Bowie A. G., Boyd A., Kotwal G., Zhang Z., Arvikar S., Latz E., Fitzgerald K. A., Marshall W. L. 2004; Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem 279:36570–36578 [View Article][PubMed]
    [Google Scholar]
  23. Doceul V., Hollinshead M., van der Linden L., Smith G. L. 2010; Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327:873–876 [View Article][PubMed]
    [Google Scholar]
  24. Ember S. W., Ren H., Ferguson B. J., Smith G. L. 2012; Vaccinia virus protein C4 inhibits NF-κB activation and promotes virus virulence. J Gen Virol 93:2098–2108 [View Article][PubMed]
    [Google Scholar]
  25. Esposito J. J., Sammons S. A., Frace A. M., Osborne J. D., Olsen-Rasmussen M., Zhang M., Govil D., Damon I. K., Kline R.& other authors ( 2006; Genome sequence diversity and clues to the evolution of variola (smallpox) virus. Science 313:807–812 [View Article][PubMed]
    [Google Scholar]
  26. Fahy A. S., Clark R. H., Glyde E. F., Smith G. L. 2008; Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J Gen Virol 89:2377–2387 [View Article][PubMed]
    [Google Scholar]
  27. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. J Virol 64:3108–3111[PubMed]
    [Google Scholar]
  28. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877 [View Article][PubMed]
    [Google Scholar]
  29. Ferguson B. J., Mansur D. S., Peters N. E., Ren H., Smith G. L. 2012; DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1:e00047 [View Article][PubMed]
    [Google Scholar]
  30. Fitzgerald K. A., McWhirter S. M., Faia K. L., Rowe D. C., Latz E., Golenbock D. T., Coyle A. J., Liao S. M., Maniatis T. 2003; IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496 [View Article][PubMed]
    [Google Scholar]
  31. García-Arriaza J., Nájera J. L., Gómez C. E., Tewabe N., Sorzano C. O., Calandra T., Roger T., Esteban M. 2011; A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS ONE 6:e24244 [View Article][PubMed]
    [Google Scholar]
  32. Gloeckner C. J., Boldt K., Schumacher A., Roepman R., Ueffing M. 2007; A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7:4228–4234 [View Article][PubMed]
    [Google Scholar]
  33. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266, 517–563 [View Article][PubMed]
    [Google Scholar]
  34. González J. M., Esteban M. 2010; A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virol J 7:59 [View Article][PubMed]
    [Google Scholar]
  35. Graham S. C., Bahar M. W., Cooray S., Chen R. A., Whalen D. M., Abrescia N. G., Alderton D., Owens R. J., Stuart D. I.& other authors ( 2008; Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4:e1000128 [View Article][PubMed]
    [Google Scholar]
  36. Gubser C., Smith G. L. 2002; The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83:855–872[PubMed]
    [Google Scholar]
  37. Harte M. T., Haga I. R., Maloney G., Gray P., Reading P. C., Bartlett N. W., Smith G. L., Bowie A., O’Neill L. A. 2003; The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197:343–351 [View Article][PubMed]
    [Google Scholar]
  38. Kalverda A. P., Thompson G. S., Vogel A., Schröder M., Bowie A. G., Khan A. R., Homans S. W. 2009; Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385:843–853 [View Article][PubMed]
    [Google Scholar]
  39. Kotwal G. J., Hügin A. W., Moss B. 1989; Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology 171:579–587 [View Article][PubMed]
    [Google Scholar]
  40. Kvansakul M., Yang H., Fairlie W. D., Czabotar P. E., Fischer S. F., Perugini M. A., Huang D. C., Colman P. M. 2008; Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 15:1564–1571 [View Article][PubMed]
    [Google Scholar]
  41. Laskowski R. A., Moss D. S., Thornton J. M. 1993; Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231:1049–1067 [View Article][PubMed]
    [Google Scholar]
  42. Lüthy R., Bowie J. U., Eisenberg D. 1992; Assessment of protein models with three-dimensional profiles. Nature 356:83–85 [View Article][PubMed]
    [Google Scholar]
  43. Mackett M., Smith G. L. 1986; Vaccinia virus expression vectors. J Gen Virol 67:2067–2082 [View Article][PubMed]
    [Google Scholar]
  44. Mackett M., Smith G. L., Moss B. 1982; Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A 79:7415–7419 [View Article][PubMed]
    [Google Scholar]
  45. Maluquer de Motes C., Cooray S., Ren H., Almeida G. M., McGourty K., Bahar M. W., Stuart D. I., Grimes J. M., Graham S. C., Smith G. L. 2011; Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog 7:e1002430 [View Article][PubMed]
    [Google Scholar]
  46. Mansur D. S., Maluquer de Motes C., Unterholzner L., Sumner R. P., Ferguson B. J., Ren H., Strnadova P., Bowie A. G., Smith G. L. 2013; Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog 9:e1003183 [View Article][PubMed]
    [Google Scholar]
  47. Martí-Renom M. A., Stuart A. C., Fiser A., Sánchez R., Melo F., Sali A. 2000; Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325 [View Article][PubMed]
    [Google Scholar]
  48. Moore J. B., Smith G. L. 1992; Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J 11:1973–1980[PubMed]
    [Google Scholar]
  49. Morgan J. R., Roberts B. E. 1984; Organization of RNA transcripts from a vaccinia virus early gene cluster. J Virol 51:283–297[PubMed]
    [Google Scholar]
  50. Morikawa S., Sakiyama T., Hasegawa H., Saijo M., Maeda A., Kurane I., Maeno G., Kimura J., Hirama C.& other authors ( 2005; An attenuated LC16m8 smallpox vaccine: analysis of full-genome sequence and induction of immune protection. J Virol 79:11873–11891 [View Article][PubMed]
    [Google Scholar]
  51. Moss B. 1996; Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93:11341–11348 [View Article][PubMed]
    [Google Scholar]
  52. Moss B. 2007; Poxviridae: the viruses and their replicaton. In Fields Virology, 5th edn. pp. 2905–2946 Edited by Knipe D. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  53. Mossman K., Upton C., Buller R. M., McFadden G. 1995; Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Virology 208:762–769 [View Article][PubMed]
    [Google Scholar]
  54. Najarro P., Traktman P., Lewis J. A. 2001; Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J Virol 75:3185–3196 [View Article][PubMed]
    [Google Scholar]
  55. Niles E. G., Seto J. 1988; Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol 62:3772–3778[PubMed]
    [Google Scholar]
  56. Oda S., Schröder M., Khan A. R. 2009; Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17:1528–1537 [View Article][PubMed]
    [Google Scholar]
  57. Osman M., Kubo T., Gill J., Neipel F., Becker M., Smith G., Weiss R., Gazzard B., Boshoff C., Gotch F. 1999; Identification of human herpesvirus 8-specific cytotoxic T-cell responses. J Virol 73:6136–6140[PubMed]
    [Google Scholar]
  58. Panicali D., Paoletti E. 1982; Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci U S A 79:4927–4931 [View Article][PubMed]
    [Google Scholar]
  59. Panicali D., Davis S. W., Weinberg R. L., Paoletti E. 1983; Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci U S A 80:5364–5368 [View Article][PubMed]
    [Google Scholar]
  60. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a M(r) 43-50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390 [View Article][PubMed]
    [Google Scholar]
  61. Postigo A., Cross J. R., Downward J., Way M. 2006; Interaction of F1L with the BH3 domain of Bak is responsible for inhibiting vaccinia-induced apoptosis. Cell Death Differ 13:1651–1662 [View Article][PubMed]
    [Google Scholar]
  62. Randall R. E., Goodbourn S. 2008; Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47 [View Article][PubMed]
    [Google Scholar]
  63. Reading P. C., Moore J. B., Smith G. L. 2003; Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197:1269–1278 [View Article][PubMed]
    [Google Scholar]
  64. Schröder M., Baran M., Bowie A. G. 2008; Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKϵ-mediated IRF activation. EMBO J 27:2147–2157 [View Article][PubMed]
    [Google Scholar]
  65. Seet B. T., Johnston J. B., Brunetti C. R., Barrett J. W., Everett H., Cameron C., Sypula J., Nazarian S. H., Lucas A., McFadden G. 2003; Poxviruses and immune evasion. Annu Rev Immunol 21:377–423 [View Article][PubMed]
    [Google Scholar]
  66. Shaw M. L., Cardenas W. B., Zamarin D., Palese P., Basler C. F. 2005; Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J Virol 79:6078–6088 [View Article][PubMed]
    [Google Scholar]
  67. Smith G. L., Mackett M., Moss B. 1983a; Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302:490–495 [View Article][PubMed]
    [Google Scholar]
  68. Smith G. L., Murphy B. R., Moss B. 1983b; Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc Natl Acad Sci U S A 80:7155–7159 [View Article][PubMed]
    [Google Scholar]
  69. Smith G. L., Symons J. A., Khanna A., Vanderplasschen A., Alcamí A. 1997; Vaccinia virus immune evasion. Immunol Rev 159:137–154 [View Article][PubMed]
    [Google Scholar]
  70. Sparrer K. M., Pfaller C. K., Conzelmann K. K. 2012; Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 86:796–805 [View Article][PubMed]
    [Google Scholar]
  71. Stack J., Haga I. R., Schröder M., Bartlett N. W., Maloney G., Reading P. C., Fitzgerald K. A., Smith G. L., Bowie A. G. 2005; Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201:1007–1018 [View Article][PubMed]
    [Google Scholar]
  72. Stewart T. L., Wasilenko S. T., Barry M. 2005; Vaccinia virus F1L protein is a tail-anchored protein that functions at the mitochondria to inhibit apoptosis. J Virol 79:1084–1098 [View Article][PubMed]
    [Google Scholar]
  73. Sumner R. P., Ren H., Smith G. L. 2013; Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy. J Gen Virol 94:1121–1126 [View Article][PubMed]
    [Google Scholar]
  74. Symons J. A., Alcamí A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560 [View Article][PubMed]
    [Google Scholar]
  75. Tamin A., Villarreal E. C., Weinrich S. L., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of the vaccinia virus HindIII N/M region encoding the genes responsible for resistance to alpha-amanitin. Virology 165:141–150 [View Article][PubMed]
    [Google Scholar]
  76. Tamin A., Esposito J., Hruby D. 1991; A single nucleotide substitution in the 5′-untranslated region of the vaccinia N2L gene is responsible for both alpha-amanitin-resistant and temperature-sensitive phenotypes. Virology 182:393–396 [View Article][PubMed]
    [Google Scholar]
  77. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80:2751–2755[PubMed]
    [Google Scholar]
  78. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83:1977–1986[PubMed]
    [Google Scholar]
  79. Unterholzner L., Sumner R. P., Baran M., Ren H., Mansur D. S., Bourke N. M., Randow F., Smith G. L., Bowie A. G. 2011; Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog 7:e1002247 [View Article][PubMed]
    [Google Scholar]
  80. Vriend G. 1990; WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56, 29 [View Article][PubMed]
    [Google Scholar]
  81. Wasilenko S. T., Banadyga L., Bond D., Barry M. 2005; The vaccinia virus F1L protein interacts with the proapoptotic protein Bak and inhibits Bak activation. J Virol 79:14031–14043 [View Article][PubMed]
    [Google Scholar]
  82. Williamson J. D., Reith R. W., Jeffrey L. J., Arrand J. R., Mackett M. 1990; Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. J Gen Virol 71:2761–2767 [View Article][PubMed]
    [Google Scholar]
  83. Yewdell J. W., Bennink J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82:1785–1789 [View Article][PubMed]
    [Google Scholar]
  84. Zhang L., Villa N. Y., Rahman M. M., Smallwood S., Shattuck D., Neff C., Dufford M., Lanchbury J. S., Labaer J., McFadden G. 2009; Analysis of vaccinia virus-host protein-protein interactions: validations of yeast two-hybrid screenings. J Proteome Res 8:4311–4318 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.054114-0
Loading
/content/journal/jgv/10.1099/vir.0.054114-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed