1887

Abstract

is one of the most important pathogens, causing various diseases in humans and animals. As methicillin-resistant (MRSA) has become increasingly prevalent, controlling this pathogen with standard antibiotic treatment has become challenging. Bacteriophages (phages) have attracted interest as alternative antibacterial agents to control MRSA. In this study, we isolated six phages from soils of poultry/livestock farms. Based on the results of host range determination with 150 strains and restriction enzyme treatment of phage DNA, two phages, designated SP5 and SP6, were selected for further characterization and genome sequencing. Both SP5 and SP6 were classified as members of the family . The genome of SP5 comprises 43 305 bp and contains 63 ORFs, while the SP6 genome comprises 42 902 bp and contains 61 ORFs. Although they have different host spectra, the phage genomes exhibit high nucleotide similarity to each other. Adsorption assay results suggested that the host range determinants of the two phages are involved in both adsorption and infection. Comparative genomic analyses of the two phages provided evidence that the lysogenic/lytic control module and tail proteins may be important for host specificity.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.053991-0
2013-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2569.html?itemId=/content/journal/jgv/10.1099/vir.0.053991-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Besemer J., Lomsadze A., Borodovsky M. 2001; GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  3. Betley M. J., Mekalanos J. J. 1985; Staphylococcal enterotoxin A is encoded by phage. Science 229:185–187 [View Article][PubMed]
    [Google Scholar]
  4. Colland F., Barth M., Hengge-Aronis R., Kolb A. 2000; Sigma factor selectivity of Escherichia coli RNA polymerase: role for CRP, IHF and lrp transcription factors. EMBO J 19:3028–3037 [View Article][PubMed]
    [Google Scholar]
  5. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L. 2007; Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679 [View Article][PubMed]
    [Google Scholar]
  6. DeLeo F. R., Chambers H. F. 2009; Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474 [View Article][PubMed]
    [Google Scholar]
  7. Dulon M., Haamann F., Peters C., Schablon A., Nienhaus A. 2011; MRSA prevalence in European healthcare settings: a review. BMC Infect Dis 11:138 [View Article][PubMed]
    [Google Scholar]
  8. Fauquet C., Mayo M. A., Maniloff J., Desselberger U., Bali L. A. editors 2005 Virus Taxonomy: Classification and Nomenclature of Viruses: Eighth Report of the International Committee on the Taxonomy of Viruses San Diego: Elsevier Academic Press;
    [Google Scholar]
  9. Ferrer M. D., Quiles-Puchalt N., Harwich M. D., Tormo-Más M. Á., Campoy S., Barbé J., Lasa Í., Novick R. P., Christie G. E., Penadés J. R. 2011; RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Res 39:5866–5878 [View Article][PubMed]
    [Google Scholar]
  10. García P., Martínez B., Obeso J. M., Lavigne R., Lurz R., Rodríguez A. 2009; Functional genomic analysis of two Staphylococcus aureus phages isolated from the dairy environment. Appl Environ Microbiol 75:7663–7673 [View Article][PubMed]
    [Google Scholar]
  11. Hofnung M., Jezierska A., Braun-Breton C. 1976; lamB mutations in E. coli K12: growth of lambda host range mutants and effect of nonsense suppressors. Mol Gen Genet 145:207–213 [View Article][PubMed]
    [Google Scholar]
  12. Kim M., Ryu S. 2011; Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli . Appl Environ Microbiol 77:2042–2050 [View Article][PubMed]
    [Google Scholar]
  13. Kronpinski A. M., Mazzocco A., Waddell T. E., Lingohr E., Johnson R. P. 2009; Enumeration of bacteriophages by double agar overlay plaque assay. In Isolation and Characterization, and Interaction Bacteriophages: Methods and Protocol vol. 1 pp. 69–76 Edited by Clokie M. R., Kropinski A. M. New York: Humana Press;
    [Google Scholar]
  14. Kutateladze M., Adamia R. 2010; Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595 [View Article][PubMed]
    [Google Scholar]
  15. Kwan T., Liu J., DuBow M., Gros P., Pelletier J. 2005; The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102:5174–5179 [View Article][PubMed]
    [Google Scholar]
  16. Letellier L., Plancon L., Boulanger P. 2007; Transfer of DNA from phage to host. In Bacteriophage: Genetics and Molecular Biology pp. 208–209 Edited by McGrath S., Van Sinderen D. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  17. Little J. W. 2007; Prophage induction of phage. In Bacteriophage: Genetics and Molecular Biology pp. 251–272 Edited by McGrath S., Van Sinderen D. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  18. Mann N. H. 2008; The potential of phages to prevent MRSA infections. Res Microbiol 159:400–405 [View Article][PubMed]
    [Google Scholar]
  19. Mazzocco A., Waddell T. E., Lingohr E., Johnson R. P. 2009; Enumeration of bacteriophages using the small drop plaque assay system. In Isolation and Characterization, and Interaction Bacteriophages: Methods and Protocol vol. 1 pp. 81–85 Edited by Clokie M. R., Kropinski A. M. New York: Humana Press;
    [Google Scholar]
  20. Narita S., Kaneko J., Chiba J., Piémont Y., Jarraud S., Etienne J., Kamio Y. 2001; Phage conversion of Panton–Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, phiSLT. Gene 268:195–206 [View Article][PubMed]
    [Google Scholar]
  21. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R. 2005; InterProScan: protein domains identifier. Nucleic Acids Res 33:Web Server issueW116–W120 [View Article][PubMed]
    [Google Scholar]
  22. Rashel M., Uchiyama J., Takemura I., Hoshiba H., Ujihara T., Takatsuji H., Honke K., Matsuzaki S. 2008; Tail-associated structural protein gp61 of Staphylococcus aureus phage phi MR11 has bifunctional lytic activity. FEMS Microbiol Lett 284:9–16 [View Article][PubMed]
    [Google Scholar]
  23. Rhoads D. D., Wolcott R. D., Kuskowski M. A., Wolcott B. M., Ward L. S., Sulakvelidze A. 2009; Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18:237–238, 240–243[PubMed] [CrossRef]
    [Google Scholar]
  24. Schattner P., Brooks A. N., Lowe T. M. 2005; The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:Web Server issueW686–W689 [View Article][PubMed]
    [Google Scholar]
  25. Stegger M., Price L. B., Larsen A. R., Gillece J. D., Waters A. E., Skov R., Andersen P. S. 2012; Genome sequence of Staphylococcus aureus strain 11819-97, an ST80-IV European community-acquired methicillin-resistant isolate. J Bacteriol 194:1625–1626 [View Article][PubMed]
    [Google Scholar]
  26. Suzek B. E., Ermolaeva M. D., Schreiber M., Salzberg S. L. 2001; A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics 17:1123–1130 [View Article][PubMed]
    [Google Scholar]
  27. Tallent S. M., Langston T. B., Moran R. G., Christie G. E. 2007; Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J Bacteriol 189:7520–7524 [View Article][PubMed]
    [Google Scholar]
  28. Tétart F., Repoila F., Monod C., Krisch H. M. 1996; Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J Mol Biol 258:726–731 [View Article][PubMed]
    [Google Scholar]
  29. van Wamel W. J., Rooijakkers S. H., Ruyken M., van Kessel K. P., van Strijp J. A. 2006; The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315 [View Article][PubMed]
    [Google Scholar]
  30. Vanderhaeghen W., Hermans K., Haesebrouck F., Butaye P. 2010; Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138:606–625 [View Article][PubMed]
    [Google Scholar]
  31. Werts C., Michel V., Hofnung M., Charbit A. 1994; Adsorption of bacteriophage lambda on the LamB protein of Escherichia coli K-12: point mutations in gene J of lambda responsible for extended host range. J Bacteriol 176:941–947[PubMed]
    [Google Scholar]
  32. Wilcox S. A., Toder R., Foster J. W. 1996; Rapid isolation of recombinant lambda phage DNA for use in fluorescence in situ hybridization. Chromosome Res 4:397–404 [View Article][PubMed]
    [Google Scholar]
  33. Winkler K. C., de Waart J., Grootsen C., Zegers B. J. M., Tellier N. F., Vertregt C. D. 1965; Lysogenic conversion of staphylococci to loss of beta-toxin. J Gen Microbiol 39:321–333 [View Article][PubMed]
    [Google Scholar]
  34. Yamaguchi T., Hayashi T., Takami H., Nakasone K., Ohnishi M., Nakayama K., Yamada S., Komatsuzawa H., Sugai M. 2000; Phage conversion of exfoliative toxin A production in Staphylococcus aureus . Mol Microbiol 38:694–705 [View Article][PubMed]
    [Google Scholar]
  35. Zou D., Kaneko J., Narita S., Kamio Y. 2000; Prophage, phiPV83-pro, carrying Panton–Valentine leukocidin genes, on the Staphylococcus aureus P83 chromosome: comparative analysis of the genome structures of phiPV83-pro, phiPVL, phi11, and other phages. Biosci Biotechnol Biochem 64:2631–2643 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.053991-0
Loading
/content/journal/jgv/10.1099/vir.0.053991-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error