1887

Abstract

The influenza virus RNA polymerase, composed of the PB1, PB2 and PA subunits, has a potential role in influencing genetic reassortment. Recent studies on the reassortment of human H3N2 strains suggest that the co-incorporation of PB2 and PA from the same H3N2 strain appears to be important for efficient virus replication; however, the underlying mechanism remains unclear. Here, we reconstituted reassortant ribonucleoprotein (RNP) complexes and demonstrated that the RNP activity was severely impaired when the PA subunit of H3N2 strain A/NT/60/1968 (NT PA) was introduced into H1N1 or H5N1 polymerase. The NT PA did not affect the correct assembly of the polymerase trimeric complex, but it significantly reduced replication-initiation activity when provided with a vRNA promoter and severely impaired the accumulation of RNP, which led to the loss of RNP activity. Mutational analysis demonstrated that PA residues 184N and 383N were the major determinants of the inhibitory effect of NT PA and 184N/383N sequences were unique to human H3N2 strains. Significantly, NT PB2 specifically relieved the inhibitory effect of NT PA, and the PB2 residue 627K played a key role. Our results suggest that PB2 from the same H3N2 strain might be required for overcoming the inhibitory effect of H3N2 PA in the genetic reassortment of influenza virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.053959-0
2013-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2406.html?itemId=/content/journal/jgv/10.1099/vir.0.053959-0&mimeType=html&fmt=ahah

References

  1. Bean W. J.. ( 1984;). Correlation of influenza A virus nucleoprotein genes with host species. . Virology 133:, 438–442. [CrossRef][PubMed]
    [Google Scholar]
  2. Biswas S. K., Nayak D. P.. ( 1994;). Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. . J Virol 68:, 1819–1826.[PubMed]
    [Google Scholar]
  3. Biswas S. K., Boutz P. L., Nayak D. P.. ( 1998;). Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. . J Virol 72:, 5493–5501.[PubMed]
    [Google Scholar]
  4. Bradel-Tretheway B. G., Mattiacio J. L., Krasnoselsky A., Stevenson C., Purdy D., Dewhurst S., Katze M. G.. ( 2011;). Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. . J Virol 85:, 8569–8581. [CrossRef][PubMed]
    [Google Scholar]
  5. Bussey K. A., Desmet E. A., Mattiacio J. L., Hamilton A., Bradel-Tretheway B., Bussey H. E., Kim B., Dewhurst S., Takimoto T.. ( 2011;). PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. . J Virol 85:, 7020–7028. [CrossRef][PubMed]
    [Google Scholar]
  6. Cauldwell A. V., Moncorgé O., Barclay W. S.. ( 2013;). Unstable polymerase–nucleoprotein interaction is not responsible for avian influenza virus polymerase restriction in human cells. . J Virol 87:, 1278–1284. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen L. M., Davis C. T., Zhou H., Cox N. J., Donis R. O.. ( 2008;). Genetic compatibility and virulence of reassortants derived from contemporary avian H5N1 and human H3N2 influenza A viruses. . PLoS Pathog 4:, e1000072. [CrossRef][PubMed]
    [Google Scholar]
  8. de Wit E., Munster V. J., van Riel D., Beyer W. E., Rimmelzwaan G. F., Kuiken T., Osterhaus A. D., Fouchier R. A.. ( 2010;). Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. . J Virol 84:, 1597–1606. [CrossRef][PubMed]
    [Google Scholar]
  9. Deng T., Sharps J., Fodor E., Brownlee G. G.. ( 2005;). In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. . J Virol 79:, 8669–8674. [CrossRef][PubMed]
    [Google Scholar]
  10. Dias A., Bouvier D., Crépin T., McCarthy A. A., Hart D. J., Baudin F., Cusack S., Ruigrok R. W.. ( 2009;). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. . Nature 458:, 914–918. [CrossRef][PubMed]
    [Google Scholar]
  11. Engelhardt O. G., Smith M., Fodor E.. ( 2005;). Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. . J Virol 79:, 5812–5818. [CrossRef][PubMed]
    [Google Scholar]
  12. Fan X., Zhu H., Zhou B., Smith D. K., Chen X., Lam T. T., Poon L. L., Peiris M., Guan Y.. ( 2012;). Emergence and dissemination of a swine H3N2 reassortant influenza virus with 2009 pandemic H1N1 genes in pigs in China. . J Virol 86:, 2375–2378. [CrossRef][PubMed]
    [Google Scholar]
  13. Fodor E., Crow M., Mingay L. J., Deng T., Sharps J., Fechter P., Brownlee G. G.. ( 2002;). A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. . J Virol 76:, 8989–9001. [CrossRef][PubMed]
    [Google Scholar]
  14. Hara K., Schmidt F. I., Crow M., Brownlee G. G.. ( 2006;). Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. . J Virol 80:, 7789–7798. [CrossRef][PubMed]
    [Google Scholar]
  15. Hemerka J. N., Wang D., Weng Y., Lu W., Kaushik R. S., Jin J., Harmon A. F., Li F.. ( 2009;). Detection and characterization of influenza A virus PA–PB2 interaction through a bimolecular fluorescence complementation assay. . J Virol 83:, 3944–3955. [CrossRef][PubMed]
    [Google Scholar]
  16. Hudjetz B., Gabriel G.. ( 2012;). Human-like PB2 627K influenza virus polymerase activity is regulated by importin-α1 and -α7. . PLoS Pathog 8:, e1002488. [CrossRef][PubMed]
    [Google Scholar]
  17. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y.. & other authors ( 2009;). In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. . Nature 460:, 1021–1025.[PubMed]
    [Google Scholar]
  18. Jagger B. W., Wise H. M., Kash J. C., Walters K. A., Wills N. M., Xiao Y. L., Dunfee R. L., Schwartzman L. M., Ozinsky A.. & other authors ( 2012;). An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. . Science 337:, 199–204. [CrossRef][PubMed]
    [Google Scholar]
  19. Kashiwagi T., Leung B. W., Deng T., Chen H., Brownlee G. G.. ( 2009;). The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding. . PLoS ONE 4:, e5473. [CrossRef][PubMed]
    [Google Scholar]
  20. Kawaoka Y., Krauss S., Webster R. G.. ( 1989;). Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. . J Virol 63:, 4603–4608.[PubMed]
    [Google Scholar]
  21. Labadie K., Dos Santos Afonso E., Rameix-Welti M. A., van der Werf S., Naffakh N.. ( 2007;). Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. . Virology 362:, 271–282. [CrossRef][PubMed]
    [Google Scholar]
  22. Li C., Hatta M., Watanabe S., Neumann G., Kawaoka Y.. ( 2008;). Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. . J Virol 82:, 11880–11888. [CrossRef][PubMed]
    [Google Scholar]
  23. Li C., Hatta M., Nidom C. A., Muramoto Y., Watanabe S., Neumann G., Kawaoka Y.. ( 2010;). Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. . Proc Natl Acad Sci U S A 107:, 4687–4692. [CrossRef][PubMed]
    [Google Scholar]
  24. Maier H. J., Kashiwagi T., Hara K., Brownlee G. G.. ( 2008;). Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. . Virology 370:, 194–204. [CrossRef][PubMed]
    [Google Scholar]
  25. Mayer D., Molawi K., Martínez-Sobrido L., Ghanem A., Thomas S., Baginsky S., Grossmann J., García-Sastre A., Schwemmle M.. ( 2007;). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. . J Proteome Res 6:, 672–682. [CrossRef][PubMed]
    [Google Scholar]
  26. Mehle A., Dugan V. G., Taubenberger J. K., Doudna J. A.. ( 2012;). Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. . J Virol 86:, 1750–1757. [CrossRef][PubMed]
    [Google Scholar]
  27. Momose F., Basler C. F., O’Neill R. E., Iwamatsu A., Palese P., Nagata K.. ( 2001;). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. . J Virol 75:, 1899–1908. [CrossRef][PubMed]
    [Google Scholar]
  28. Nakazono Y., Hara K., Kashiwagi T., Hamada N., Watanabe H.. ( 2012;). The RNA polymerase PB2 subunit of influenza A/HongKong/156/1997 (H5N1) restricts the replication of reassortant ribonucleoprotein complexes [corrected]. . PLoS ONE 7:, e32634. [CrossRef][PubMed]
    [Google Scholar]
  29. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team Dawood F. S., Jain S., Finelli L., Shaw M. W., Lindstrom S., Garten R. J., Gubareva L. V., Xu X., Bridges C. B., Uyeki T. M.. ( 2009;). Emergence of a novel swine-origin influenza A (H1N1) virus in humans. . N Engl J Med 360:, 2605–2615. [CrossRef][PubMed]
    [Google Scholar]
  30. Olsen C. W.. ( 2002;). The emergence of novel swine influenza viruses in North America. . Virus Res 85:, 199–210. [CrossRef][PubMed]
    [Google Scholar]
  31. Palese P., Shaw M. L.. ( 2007;). Orthomyxoviridae: the viruses and their replication. . In Fields Virology, , 5th edn., pp. 1647–1689. Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roitman B., Straus S. E... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  32. Peiris J. S., Poon L. L., Guan Y.. ( 2009;). Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. . J Clin Virol 45:, 169–173. [CrossRef][PubMed]
    [Google Scholar]
  33. Pérez-González A., Rodriguez A., Huarte M., Salanueva I. J., Nieto A.. ( 2006;). hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. . J Mol Biol 362:, 887–900. [CrossRef][PubMed]
    [Google Scholar]
  34. Poole E., Elton D., Medcalf L., Digard P.. ( 2004;). Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. . Virology 321:, 120–133. [CrossRef][PubMed]
    [Google Scholar]
  35. Richardson J. S., Richardson D. C.. ( 1989;). Prediction of protein structure and the principles of protein conformation. . In Principles and Patterns of Protein Conformation, pp. xxx–yyy. Edited by Fasman G. D... New York:: Springer;. [CrossRef]
    [Google Scholar]
  36. Rolling T., Koerner I., Zimmermann P., Holz K., Haller O., Staeheli P., Kochs G.. ( 2009;). Adaptive mutations resulting in enhanced polymerase activity contribute to high virulence of influenza A virus in mice. . J Virol 83:, 6673–6680. [CrossRef][PubMed]
    [Google Scholar]
  37. Scholtissek C., Bürger H., Kistner O., Shortridge K. F.. ( 1985;). The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. . Virology 147:, 287–294. [CrossRef][PubMed]
    [Google Scholar]
  38. Snyder M. H., Buckler-White A. J., London W. T., Tierney E. L., Murphy B. R.. ( 1987;). The avian influenza virus nucleoprotein gene and a specific constellation of avian and human virus polymerase genes each specify attenuation of avian-human influenza A/Pintail/79 reassortant viruses for monkeys. . J Virol 61:, 2857–2863.[PubMed]
    [Google Scholar]
  39. Taubenberger J. K., Reid A. H., Lourens R. M., Wang R., Jin G., Fanning T. G.. ( 2005;). Characterization of the 1918 influenza virus polymerase genes. . Nature 437:, 889–893. [CrossRef][PubMed]
    [Google Scholar]
  40. Treanor J., Perkins M., Battaglia R., Murphy B. R.. ( 1994;). Evaluation of the genetic stability of the temperature-sensitive PB2 gene mutation of the influenza A/Ann Arbor/6/60 cold-adapted vaccine virus. . J Virol 68:, 7684–7688.[PubMed]
    [Google Scholar]
  41. Vreede F. T., Jung T. E., Brownlee G. G.. ( 2004;). Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. . J Virol 78:, 9568–9572. [CrossRef][PubMed]
    [Google Scholar]
  42. Wright P. F., Neumann G., Kawaoka Y.. ( 2007;). Orthomyxoviruses. . In Fields Virology, , 5th edn., pp. 1692–1740. Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roitman B., Straus S. E... Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  43. Yuan P., Bartlam M., Lou Z., Chen S., Zhou J., He X., Lv Z., Ge R., Li X.. & other authors ( 2009;). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. . Nature 458:, 909–913. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.053959-0
Loading
/content/journal/jgv/10.1099/vir.0.053959-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error