Innate immune responses in raccoons after raccoon rabies virus infection Free

Abstract

Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.053942-0
2014-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/1/16.html?itemId=/content/journal/jgv/10.1099/vir.0.053942-0&mimeType=html&fmt=ahah

References

  1. Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. 2001; Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732–738 [View Article][PubMed]
    [Google Scholar]
  2. Baer G. M., Cleary W. F. 1972; A model in mice for the pathogenesis and treatment of rabies. J Infect Dis 125:520–527 [View Article][PubMed]
    [Google Scholar]
  3. Baloul L., Lafon M. 2003; Apoptosis and rabies virus neuroinvasion. Biochimie 85:777–788 [View Article][PubMed]
    [Google Scholar]
  4. Biek R., Henderson J. C., Waller L. A., Rupprecht C. E., Real L. A. 2007; A high-resolution genetic signature of demographic and spatial expansion in epizootic rabies virus. Proc Natl Acad Sci U S A 104:7993–7998 [View Article][PubMed]
    [Google Scholar]
  5. Brzózka K., Finke S., Conzelmann K. K. 2006; Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 80:2675–2683 [View Article][PubMed]
    [Google Scholar]
  6. Camelo S., Lafage M., Lafon M. 2000; Absence of the p55 Kd TNF-α receptor promotes survival in rabies virus acute encephalitis. J Neurovirol 6:507–518 [View Article][PubMed]
    [Google Scholar]
  7. Carey A., Mclean R. 1983; The ecology of rabies–evidence of co-adaptation. J Appl Ecol 20:777–800 [View Article]
    [Google Scholar]
  8. Charlton K. M., Nadin-Davis S., Casey G. A., Wandeler A. I. 1997; The long incubation period in rabies: delayed progression of infection in muscle at the site of exposure. Acta Neuropathol 94:73–77 [View Article][PubMed]
    [Google Scholar]
  9. Chelbi-Alix M. K., Vidy A., El Bougrini J., Blondel D. 2006; Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies. J Interferon Cytokine Res 26:271–280 [View Article][PubMed]
    [Google Scholar]
  10. Conzelmann K. K. 2005; Transcriptional activation of alpha/beta interferon genes: interference by nonsegmented negative-strand RNA viruses. J Virol 79:5241–5248 [View Article][PubMed]
    [Google Scholar]
  11. Cussigh A., Falleti E., Fabris C., Bitetto D., Cmet S., Fontanini E., Bignulin S., Fornasiere E., Fumolo E. other authors 2011; Interleukin 6 promoter polymorphisms influence the outcome of chronic hepatitis C. Immunogenetics 63:33–41 [View Article][PubMed]
    [Google Scholar]
  12. Daszak P., Cunningham A. A., Hyatt A. D. 2000; Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287:443–449 [View Article][PubMed]
    [Google Scholar]
  13. Daszak P., Cunningham A. A., Hyatt A. D. 2001; Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116 [View Article][PubMed]
    [Google Scholar]
  14. Faber M., Bette M., Preuss M. A., Pulmanausahakul R., Rehnelt J., Schnell M. J., Dietzschold B., Weihe E. 2005; Overexpression of tumor necrosis factor alpha by a recombinant rabies virus attenuates replication in neurons and prevents lethal infection in mice. J Virol 79:15405–15416 [View Article][PubMed]
    [Google Scholar]
  15. Faul E. J., Wanjalla C. N., Suthar M. S., Gale M., Wirblich C., Schnell M. J. 2010; Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS Pathog 6:e1001016 [View Article][PubMed]
    [Google Scholar]
  16. Frei K., Malipiero U. V., Leist T. P., Zinkernagel R. M., Schwab M. E., Fontana A. 1989; On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol 19:689–694 [View Article][PubMed]
    [Google Scholar]
  17. Fu Z. F. 1997; Rabies and rabies research: past, present and future. Vaccine 15:Suppl.S20–S24 [View Article][PubMed]
    [Google Scholar]
  18. Haller O., Kochs G., Weber F. 2006; The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–130 [View Article][PubMed]
    [Google Scholar]
  19. Harmon M. W., Janis B., Levy H. B. 1974; Post-exposure prophylaxis of murine rabies with polyinosinic-polycytidylic acid and chlorite-oxidized amylose. Antimicrob Agents Chemother 6:507–511 [View Article][PubMed]
    [Google Scholar]
  20. Harvell C. D., Mitchell C. E., Ward J. R., Altizer S., Dobson A. P., Ostfeld R. S., Samuel M. D. 2002; Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162 [View Article][PubMed]
    [Google Scholar]
  21. Hilfenhaus J., Karges H. E., Weinmann E., Barth R. 1975; Effect of administered human interferon on experimental rabies in monkeys. Infect Immun 11:1156–1158[PubMed]
    [Google Scholar]
  22. Hooper D. C., Morimoto K., Bette M., Weihe E., Koprowski H., Dietzschold B. 1998; Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J Virol 72:3711–3719[PubMed]
    [Google Scholar]
  23. Jackson A. C. 2007; Pathogenesis. In Rabies, 2nd edn. pp. 341–381 Edited by Jackson A. C., Wunner W. H. San Diego, CA: Academic Press; [View Article]
    [Google Scholar]
  24. Jackson A. C., Reimer D. L. 1989; Pathogenesis of experimental rabies in mice: an immunohistochemical study. Acta Neuropathol 78:159–165 [View Article][PubMed]
    [Google Scholar]
  25. Johnson N., McKimmie C. S., Mansfield K. L., Wakeley P. R., Brookes S. M., Fazakerley J. K., Fooks A. R. 2006; Lyssavirus infection activates interferon gene expression in the brain. J Gen Virol 87:2663–2667 [View Article][PubMed]
    [Google Scholar]
  26. Kelly R. M., Strick P. L. 2000; Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71 [View Article][PubMed]
    [Google Scholar]
  27. Knobel D. L., Cleaveland S., Coleman P. G., Fèvre E. M., Meltzer M. I., Miranda M. E., Shaw A., Zinsstag J., Meslin F. X. 2005; Re-evaluating the burden of rabies in Africa and Asia. Bull World Health Organ 83:360–368[PubMed]
    [Google Scholar]
  28. Lafon M., Mégret F., Meuth S. G., Simon O., Velandia Romero M. L., Lafage M., Chen L., Alexopoulou L., Flavell R. A. other authors 2008; Detrimental contribution of the immuno-inhibitor B7-H1 to rabies virus encephalitis. J Immunol 180:7506–7515[PubMed] [CrossRef]
    [Google Scholar]
  29. Mansfield K. L., Johnson N., Nuñez A., Hicks D., Jackson A. C., Fooks A. R. 2008; Up-regulation of chemokine gene transcripts and T-cell infiltration into the central nervous system and dorsal root ganglia are characteristics of experimental European bat lyssavirus type 2 infection of mice. J Neurovirol 14:218–228 [View Article][PubMed]
    [Google Scholar]
  30. Marié I., Durbin J. E., Levy D. E. 1998; Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660–6669 [View Article][PubMed]
    [Google Scholar]
  31. Marquette C., Van Dam A. M., Ceccaldi P. E., Weber P., Haour F., Tsiang H. 1996; Induction of immunoreactive interleukin-1β and tumor necrosis factor-α in the brains of rabies virus infected rats. J Neuroimmunol 68:45–51 [View Article][PubMed]
    [Google Scholar]
  32. McKimmie C. S., Johnson N., Fooks A. R., Fazakerley J. K. 2005; Viruses selectively upregulate Toll-like receptors in the central nervous system. Biochem Biophys Res Commun 336:925–933 [View Article][PubMed]
    [Google Scholar]
  33. Osterlund P., Veckman V., Sirén J., Klucher K. M., Hiscott J., Matikainen S., Julkunen I. 2005; Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 79:9608–9617 [View Article][PubMed]
    [Google Scholar]
  34. Ovsyannikova I. G., Haralambieva I. H., Kennedy R. B., Pankratz V. S., Vierkant R. A., Jacobson R. M., Poland G. A. 2012; Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination. Gene 510:59–65 [View Article][PubMed]
    [Google Scholar]
  35. Prosniak M., Hooper D. C., Dietzschold B., Koprowski H. 2001; Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci U S A 98:2758–2763 [View Article][PubMed]
    [Google Scholar]
  36. Rieder M., Brzózka K., Pfaller C. K., Cox J. H., Stitz L., Conzelmann K. K. 2011; Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity. J Virol 85:842–852 [View Article][PubMed]
    [Google Scholar]
  37. Rosatte R., Allan M. 2009; The ecology of red foxes, Vulpes vulpes, in metropolitan Toronto, Ontario: disease management implications. Can Field Nat 123:215–220
    [Google Scholar]
  38. Rosatte R., Ryckman M., Ing K., Proceviat S., Allan M., Bruce L., Donovan D., Davies J. C. 2010; Density, movements, and survival of raccoons in Ontario, Canada: implications for disease spread and management. J Mammal 91:122–135 [View Article]
    [Google Scholar]
  39. Rosatte R., Kelly P., Power M. 2011; Home range, movements, and habitat utilization of striped skunk (Mephitis mephitis) in Scarborough, Ontario, Canada: disease management implications. Can Field Nat 125:27–33
    [Google Scholar]
  40. Rupprecht C. E., Hamir A. N., Johnston D. H., Koprowski H. 1988; Efficacy of a vaccinia-rabies glycoprotein recombinant virus vaccine in raccoons (Procyon lotor). Rev Infect Dis 10:Suppl 4S803–S809 [View Article][PubMed]
    [Google Scholar]
  41. Saha S., Rangarajan P. N. 2003; Common host genes are activated in mouse brain by Japanese encephalitis and rabies viruses. J Gen Virol 84:1729–1735 [View Article][PubMed]
    [Google Scholar]
  42. Samuel C. E. 2001; Antiviral actions of interferons. Clin Microbiol Rev 14:778–809 [View Article][PubMed]
    [Google Scholar]
  43. Schmittgen T. D., Livak K. J. 2008; Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108 [View Article][PubMed]
    [Google Scholar]
  44. Shankar V., Dietzschold B., Koprowski H. 1991; Direct entry of rabies virus into the central nervous system without prior local replication. J Virol 65:2736–2738[PubMed]
    [Google Scholar]
  45. Solanki A., Radotra B. D., Vasishta R. K. 2009; Correlation of cytokine expression with rabies virus distribution in rabies encephalitis. J Neuroimmunol 217:85–89 [View Article][PubMed]
    [Google Scholar]
  46. Szanto A. 2009 Molecular genetics of the raccoon rabies virus PhD dissertation, Trent University; UK:
    [Google Scholar]
  47. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  48. Totton S. C., Tinline R. R., Rosatte R. C., Bigler L. L. 2002; Contact rates of raccoons (Procyon lotor) at a communal feeding site in rural eastern Ontario. J Wildl Dis 38:313–319 [View Article][PubMed]
    [Google Scholar]
  49. Tsiang H., de la Porte S., Ambroise D. J., Derer M., Koenig J. 1986; Infection of cultured rat myotubes and neurons from the spinal cord by rabies virus. J Neuropathol Exp Neurol 45:28–42 [View Article][PubMed]
    [Google Scholar]
  50. Vidy A., El Bougrini J., Chelbi-Alix M. K., Blondel D. 2007; The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. J Virol 81:4255–4263 [View Article][PubMed]
    [Google Scholar]
  51. Wang Z. W., Sarmento L., Wang Y., Li X. Q., Dhingra V., Tseggai T., Jiang B., Fu Z. F. 2005; Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79:12554–12565 [View Article][PubMed]
    [Google Scholar]
  52. World Health Organization 2005 WHO expert consultation on Rabies, 2004. First Report: WHO technical report series no.931 Geneva: WHO;
    [Google Scholar]
  53. Zhao P., Zhao L., Zhang T., Qi Y., Wang T., Liu K., Wang H., Feng H., Jin H. other authors 2011; Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. Comp Immunol Microbiol Infect Dis 34:503–512 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.053942-0
Loading
/content/journal/jgv/10.1099/vir.0.053942-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed