Experimental and bioinformatic evidence that raspberry leaf blotch emaravirus P4 is a movement protein of the 30K superfamily Open Access

Abstract

is a recently described genus of negative-strand RNA plant viruses. P4 protein localizes to plasmodesmata, suggesting that it could be a viral movement protein (MP). In the current study, we showed that the P4 protein of raspberry leaf blotch emaravirus (RLBV) rescued the cell-to-cell movement of a defective potato virus X (PVX) that had a deletion mutation in the triple gene block 1 movement-associated protein. This demonstrated that RLBV P4 is a functional MP. Sequence analyses revealed that P4 is a distant member of the 30K superfamily of MPs. All MPs of this family contain two highly conserved regions predicted to form β-strands, namely β1 and β2. We explored by alanine mutagenesis the role of two residues of P4 (Ile106 and Asp127) located in each of these strands. We also made the equivalent substitutions in the 29K MP of tobacco rattle virus, another member of the 30K superfamily. All substitutions abolished the ability to complement PVX movement, except for the I106A substitution in the β1 region of P4. This region has been shown to mediate membrane association of 30K MPs; our results show that it is possible to make non-conservative substitutions of a well-conserved aliphatic residue within β1 without preventing the membrane association or movement function of P4.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.053256-0
2013-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/9/2117.html?itemId=/content/journal/jgv/10.1099/vir.0.053256-0&mimeType=html&fmt=ahah

References

  1. Ajjikuttira P., Loh C.-S., Wong S.-M. 2005; Reciprocal function of movement proteins and complementation of long-distance movement of Cymbidium mosaic virus RNA by Odontoglossum ringspot virus coat protein. J Gen Virol 86:1543–1553 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  4. Andika I. B., Zheng S., Tan Z., Sun L., Kondo H., Zhou X., Chen J. 2013; Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 435:493–503 [View Article][PubMed]
    [Google Scholar]
  5. Bayne E. H., Rakitina D. V., Morozov S. Y., Baulcombe D. C. 2005; Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482 [View Article][PubMed]
    [Google Scholar]
  6. Bertens P., Wellink J., Goldbach R., van Kammen A. 2000; Mutational analysis of the cowpea mosaic virus movement protein. Virology 267:199–208 [View Article][PubMed]
    [Google Scholar]
  7. Biegert A., Mayer C., Remmert M., Söding J., Lupas A. N. 2006; The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Res 34:Web Server issueW335–W339 [View Article][PubMed]
    [Google Scholar]
  8. Brandt B. W., Heringa J. 2009; webPRC: the Profile Comparer for alignment-based searching of public domain databases. Nucleic Acids Res 37:Web Server issueW48–W52 [View Article][PubMed]
    [Google Scholar]
  9. Brill L. M., Nunn R. S., Kahn T. W., Yeager M., Beachy R. N. 2000; Recombinant tobacco mosaic virus movement protein is an RNA-binding, α-helical membrane protein. Proc Natl Acad Sci U S A 97:7112–7117 [View Article][PubMed]
    [Google Scholar]
  10. Curtis M. D., Grossniklaus U. 2003; A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469 [View Article][PubMed]
    [Google Scholar]
  11. Di Tommaso P., Moretti S., Xenarios I., Orobitg M., Montanyola A., Chang J. M., Taly J. F., Notredame C. 2011; T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:Suppl.W13–W17 [View Article][PubMed]
    [Google Scholar]
  12. Dunbrack R. L. Jr 2006; Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16:374–384 [View Article][PubMed]
    [Google Scholar]
  13. Ebrahim-Nesbat F., Izadpanah K. 1992; Virus-like particles associated with ringfleck mosaic of mountain ash and a mosaic disease of raspberry in the Bavarian Forest. Eur J Forest Pathol 22:1–10 [View Article]
    [Google Scholar]
  14. Elbeaino T., Digiaro M., Martelli G. P. 2009; Complete nucleotide sequence of four RNA segments of fig mosaic virus. Arch Virol 154:1719–1727 [View Article][PubMed]
    [Google Scholar]
  15. Fajardo T. V. M., Peiró A., Pallás V., Sánchez-Navarro J. 2013; Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family. J Gen Virol 94:677–681 [View Article][PubMed]
    [Google Scholar]
  16. Ferron F., Longhi S., Canard B., Karlin D. 2006; A practical overview of protein disorder prediction methods. Proteins 65:1–14 [View Article][PubMed]
    [Google Scholar]
  17. Fujiki M., Kawakami S., Kim R. W., Beachy R. N. 2006; Domains of tobacco mosaic virus movement protein essential for its membrane association. J Gen Virol 87:2699–2707 [View Article][PubMed]
    [Google Scholar]
  18. Gruber M., Söding J., Lupas A. N. 2006; Comparative analysis of coiled-coil prediction methods. J Struct Biol 155:140–145 [View Article][PubMed]
    [Google Scholar]
  19. Hildebrand A., Remmert M., Biegert A., Söding J. 2009; Fast and accurate automatic structure prediction with HHpred. Proteins 77:Suppl. 9128–132 [View Article][PubMed]
    [Google Scholar]
  20. Ishida T., Kinoshita K. 2008; Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24:1344–1348 [View Article][PubMed]
    [Google Scholar]
  21. Ishikawa K., Maejima K., Komatsu K., Kitazawa Y., Hashimoto M., Takata D., Yamaji Y., Namba S. 2012; Identification and characterization of two novel genomic RNA segments of fig mosaic virus, RNA5 and RNA6. J Gen Virol 93:1612–1619 [View Article][PubMed]
    [Google Scholar]
  22. Ishikawa K., Maejima K., Komatsu K., Netsu O., Keima T., Shiraishi T., Okano Y., Hashimoto M., Yamaji Y., Namba S. 2013; Fig mosaic emaravirus p4 protein is involved in cell-to-cell movement. J Gen Virol 94:682–686 [View Article][PubMed]
    [Google Scholar]
  23. Jaroszewski L., Li Z., Cai X. H., Weber C., Godzik A. 2011; FFAS server: novel features and applications. Nucleic Acids Res 39:Suppl.W38–W44 [View Article][PubMed]
    [Google Scholar]
  24. Kahn T. W., Lapidot M., Heinlein M., Reichel C., Cooper B., Gafny R., Beachy R. N. 1998; Domains of the TMV movement protein involved in subcellular localization. Plant J 15:15–25 [View Article][PubMed]
    [Google Scholar]
  25. Karlin D., Belshaw R. 2012; Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS ONE 7:e31719 [View Article][PubMed]
    [Google Scholar]
  26. Kawakami S., Hori K., Hosokawa D., Okada Y., Watanabe Y. 2003; Defective tobamovirus movement protein lacking wild-type phosphorylation sites can be complemented by substitutions found in revertants. J Virol 77:1452–1461 [View Article][PubMed]
    [Google Scholar]
  27. Koonin E. V., Mushegian A. R., Ryabov E. V., Dolja V. V. 1991; Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72:2895–2903 [View Article][PubMed]
    [Google Scholar]
  28. Laney A. G., Keller K. E., Martin R. R., Tzanetakis I. E. 2011; A discovery 70 years in the making: characterization of the rose rosette virus. J Gen Virol 92:1727–1732 [View Article][PubMed]
    [Google Scholar]
  29. Li W., Lewandowski D. J., Hilf M. E., Adkins S. 2009; Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 390:110–121 [View Article][PubMed]
    [Google Scholar]
  30. Marchler-Bauer A., Bryant S. H. 2004; CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:Suppl.W327–W331 [View Article][PubMed]
    [Google Scholar]
  31. Marchler-Bauer A., Zheng C., Chitsaz F., Derbyshire M. K., Geer L. Y., Geer R. C., Gonzales N. R., Gwadz M., Hurwitz D. I. other authors 2013; CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:Database issueD348–D352 [View Article][PubMed]
    [Google Scholar]
  32. Martínez-Gil L., Sánchez-Navarro J. A., Cruz A., Pallás V., Pérez-Gil J., Mingarro I. 2009; Plant virus cell-to-cell movement is not dependent on the transmembrane disposition of its movement protein. J Virol 83:5535–5543 [View Article][PubMed]
    [Google Scholar]
  33. McGavin W. J., Mitchell C., Cock P. J. A., Wright K. M., MacFarlane S. A. 2012; Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. J Gen Virol 93:430–437 [View Article][PubMed]
    [Google Scholar]
  34. Melcher U. 2000; The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81:257–266[PubMed]
    [Google Scholar]
  35. Mielke N., Muehlbach H. P. 2007; A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). J Gen Virol 88:1337–1346 [View Article][PubMed]
    [Google Scholar]
  36. Mielke-Ehret N., Thoma J., Schlatermund N., Mühlbach H. P. 2010; Detection of European mountain ash ringspot-associated virus-specific RNA and protein P3 in the pear leaf blister mite Phytoptus pyri (Eriophyidae). Arch Virol 155:987–991 [View Article][PubMed]
    [Google Scholar]
  37. Morozov S. Y., Fedorkin O. N., Jüttner G., Schiemann J., Baulcombe D. C., Atabekov J. G. 1997; Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol 78:2077–2083[PubMed]
    [Google Scholar]
  38. Mushegian A. R., Koonin E. V. 1993; Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Arch Virol 133:239–257 [View Article][PubMed]
    [Google Scholar]
  39. Ooi H. S., Kwo C. Y., Wildpaner M., Sirota F. L., Eisenhaber B., Maurer-Stroh S., Wong W. C., Schleiffer A., Eisenhaber F., Schneider G. 2009; ANNIE: integrated de novo protein sequence annotation. Nucleic Acids Res 37:Suppl.W435–W440 [View Article][PubMed]
    [Google Scholar]
  40. Pei J., Kim B. H., Tang M., Grishin N. V. 2007; PROMALS web server for accurate multiple protein sequence alignments. Nucleic Acids Res 35:Suppl.W649–W652 [View Article][PubMed]
    [Google Scholar]
  41. Procter J. B., Thompson J., Letunic I., Creevey C., Jossinet F., Barton G. J. 2010; Visualization of multiple alignments, phylogenies and gene family evolution. Nat Methods 7:Suppl.S16–S25 [View Article][PubMed]
    [Google Scholar]
  42. Remmert M., Biegert A., Hauser A., Söding J. 2012; HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9:173–175 [View Article][PubMed]
    [Google Scholar]
  43. Sánchez-Navarro J. A., Carmen Herranz M., Pallás V. 2006; Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology 346:66–73 [View Article][PubMed]
    [Google Scholar]
  44. Schoelz J. E., Harries P. A., Nelson R. S. 2011; Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant 4:813–831 [View Article][PubMed]
    [Google Scholar]
  45. Söding J., Remmert M. 2011; Protein sequence comparison and fold recognition: progress and good-practice benchmarking. Curr Opin Struct Biol 21:404–411 [View Article][PubMed]
    [Google Scholar]
  46. Stavolone L., Villani M. E., Leclerc D., Hohn T. 2005; A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc Natl Acad Sci U S A 102:6219–6224 [View Article][PubMed]
    [Google Scholar]
  47. Taly J. F., Magis C., Bussotti G., Chang J. M., Di Tommaso P., Erb I., Espinosa-Carrasco J., Kemena C., Notredame C. 2011; Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat Protoc 6:1669–1682 [View Article][PubMed]
    [Google Scholar]
  48. Thomas C. L., Maule A. J. 1995; Identification of structural domains within the cauliflower mosaic virus movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 7:561–572[PubMed] [CrossRef]
    [Google Scholar]
  49. Toth R. L., Pogue G. P., Chapman S. 2002; Improvement of the movement and host range properties of a plant virus vector through DNA shuffling. Plant J 30:593–600 [View Article][PubMed]
    [Google Scholar]
  50. Verchot-Lubicz J., Torrance L., Solovyev A. G., Morozov S. Y., Jackson A. O., Gilmer D. 2010; Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact 23:1231–1247 [View Article][PubMed]
    [Google Scholar]
  51. Voinnet O., Rivas S., Mestre P., Baulcombe D. 2003; An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956 [View Article][PubMed]
    [Google Scholar]
  52. Waterhouse A. M., Procter J. B., Martin D. M., Clamp M., Barton G. J. 2009; Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191 [View Article][PubMed]
    [Google Scholar]
  53. Zhang C., Pei X., Wang Z., Jia S., Guo S., Zhang Y., Li W. 2012; The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. . Virology 425:113–121 [View Article][PubMed]
    [Google Scholar]
  54. Zhu X., Zhao X., Burkholder W. F., Gragerov A., Ogata C. M., Gottesman M. E., Hendrickson W. A. 1996; Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.053256-0
Loading
/content/journal/jgv/10.1099/vir.0.053256-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed