1887

Abstract

Human cytomegalovirus (CMV) infects monocytes and other haematopoietic progenitor cells which then act as reservoirs for latency and virus dissemination. The chemokine CCL2 (monocyte chemotactic protein-1 or MCP-1) exhibits potent chemotactic activity for monocytes and is a likely target for CMV-induced immunomodulation. In this study, we demonstrate CMV modulates CCL2 expression in MRC-5 fibroblasts with multiplicity-dependent kinetics, where CCL2 is upregulated during early stage infection, followed by CCL2 inhibition at late stage infection. This CMV-induced CCL2 modulation was dependent upon virus replication, as UV-inactivated virus did not elicit any changes in CCL2 levels. Dual immunofluorescence staining showed CMV strains AD169, purified AD169, Merlin, FIX WT (FLAG-US28/WT) and pUS28-deficient FIX (FIX-ΔUS28) all induced upregulation of CCL2 primarily within infected cells. Focal upregulation of CCL2 within FIX-ΔUS28-infected cells demonstrated intracellular CCL2 accumulation was independent of CCL2 sequestration by the CMV-encoded chemokine receptor US28. Infection with purified virus confirmed CMV-induced CCL2 upregulation was not due to any CCL2-inducing factors contained within non-purified virus stocks. The CMV-induced CCL2 expression kinetics occurred concurrently with modulation of the CCL2 transcriptional activators NF-κB, interferon regulatory factor 3 and cytokine IFN-β, independent of virus strain, and with the establishment of viral replication compartments within infected cell nuclei. This is the first report to our knowledge to demonstrate CMV modulation of CCL2 expression within infected cells during viral replication. This immune modulation may facilitate virus dissemination, establishment of latency and pathogenesis of CMV-induced host disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052878-0
2013-11-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/11/2495.html?itemId=/content/journal/jgv/10.1099/vir.0.052878-0&mimeType=html&fmt=ahah

References

  1. Abate D. A., Watanabe S., Mocarski E. S. 2004; Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J Virol 78:10995–11006 [CrossRef][PubMed]
    [Google Scholar]
  2. Bodaghi B., Jones T. R., Zipeto D., Vita C., Sun L., Laurent L., Arenzana-Seisdedos F., Virelizier J. L., Michelson S. 1998; Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866 [CrossRef][PubMed]
    [Google Scholar]
  3. Britt W. J. 2010; Human cytomegalovirus: propagation, quantification, and storage. Curr Protoc Microbiol 1414E.3.1–14E.3.17
    [Google Scholar]
  4. Chaiworapongsa T., Romero R., Tolosa J. E., Yoshimatsu J., Espinoza J., Kim Y. M., Kim J. C., Bujold E., Kalache K., Edwin S. 2002; Elevated monocyte chemotactic protein-1 in amniotic fluid is a risk factor for pregnancy loss. J Matern Fetal Neonatal Med 12:159–164 [CrossRef][PubMed]
    [Google Scholar]
  5. Cheeran M. C.-J., Hu S., Yager S. L., Gekker G., Peterson P. K., Lokensgard J. R. 2001; Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neurovirol 7:135–147 [CrossRef][PubMed]
    [Google Scholar]
  6. Child S. J., Jarrahian S., Harper V. M., Geballe A. P. 2002; Complementation of vaccinia virus lacking the double-stranded RNA-binding protein gene E3L by human cytomegalovirus. J Virol 76:4912–4918 [CrossRef][PubMed]
    [Google Scholar]
  7. Compton T. 2004; Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell Biol 14:5–8 [CrossRef][PubMed]
    [Google Scholar]
  8. Daley-Bauer L. P., Wynn G. M., Mocarski E. S. 2012; Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes. Immunity 37:122–133 [CrossRef][PubMed]
    [Google Scholar]
  9. DeFilippis V. R., Alvarado D., Sali T., Rothenburg S., Früh K. 2010; Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J Virol 84:585–598 [CrossRef][PubMed]
    [Google Scholar]
  10. Esplin M. S., Peltier M. R., Hamblin S., Smith S., Fausett M. B., Dildy G. A., Branch D. W., Silver R. M., Adashi E. Y. 2005; Monocyte chemotactic protein-1 expression is increased in human gestational tissues during term and preterm labor. Placenta 26:661–671 [CrossRef][PubMed]
    [Google Scholar]
  11. Göser S., Ottl R., Brodner A., Dengler T. J., Torzewski J., Egashira K., Rose N. R., Katus H. A., Kaya Z. 2005; Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation 112:3400–3407 [CrossRef][PubMed]
    [Google Scholar]
  12. Hamilton S. T., Scott G., Naing Z., Iwasenko J., Hall B., Graf N., Arbuckle S., Craig M. E., Rawlinson W. D. 2012; Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes. PLoS ONE 7:e52899 [CrossRef][PubMed]
    [Google Scholar]
  13. Hildebrand D. G., Alexander E., Hörber S., Lehle S., Obermayer K., Münck N. A., Rothfuss O., Frick J. S., Morimatsu M. other authors 2013; IκBζ is a transcriptional key regulator of CCL2/MCP-1. J Immunol 190:4812–4820[PubMed]
    [Google Scholar]
  14. Hirsch A. J., Shenk T. 1999; Human cytomegalovirus inhibits transcription of the CC chemokine MCP-1 gene. J Virol 73:404–410[PubMed]
    [Google Scholar]
  15. Iwasenko J. M., Howard J., Arbuckle S., Graf N., Hall B., Craig M. E., Rawlinson W. D. 2011; Human cytomegalovirus infection is detected frequently in stillbirths and is associated with fetal thrombotic vasculopathy. J Infect Dis 203:1526–1533 [CrossRef][PubMed]
    [Google Scholar]
  16. Jarvis M. A., Borton J. A., Keech A. M., Wong J., Britt W. J., Magun B. E., Nelson J. A. 2006; Human cytomegalovirus attenuates interleukin-1β and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-κB activation. J Virol 80:5588–5598 [CrossRef][PubMed]
    [Google Scholar]
  17. Karlen Y., McNair A., Perseguers S., Mazza C., Mermod N. 2007; Statistical significance of quantitative PCR. BMC Bioinformatics 8:131 [CrossRef][PubMed]
    [Google Scholar]
  18. Katabuchi H., Yih S., Ohba T., Matsui K., Takahashi K., Takeya M., Okamura H. 2003; Characterization of macrophages in the decidual atherotic spiral artery with special reference to the cytology of foam cells. Med Electron Microsc 36:253–262 [CrossRef][PubMed]
    [Google Scholar]
  19. Paladino P., Cummings D. T., Noyce R. S., Mossman K. L. 2006; The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J Immunol 177:8008–8016[PubMed] [CrossRef]
    [Google Scholar]
  20. Pfaffl M. W. 2001; A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45e [CrossRef][PubMed]
    [Google Scholar]
  21. Platanias L. C. 2005; Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386 [CrossRef][PubMed]
    [Google Scholar]
  22. Ruijter J. M., Ramakers C., Hoogaars W. M., Karlen Y., Bakker O., van den Hoff M. J., Moorman A. F. 2009; Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45 [CrossRef][PubMed]
    [Google Scholar]
  23. Scott G. M., Chow S. S., Craig M. E., Pang C. N., Hall B., Wilkins M. R., Jones C. A., Lloyd A. R., Rawlinson W. D. 2012; Cytomegalovirus infection during pregnancy with maternofetal transmission induces a proinflammatory cytokine bias in placenta and amniotic fluid. J Infect Dis 205:1305–1310 [CrossRef][PubMed]
    [Google Scholar]
  24. Stanton R. J., Baluchova K., Dargan D. J., Cunningham C., Sheehy O., Seirafian S., McSharry B. P., Neale M. L., Davies J. A. other authors 2010; Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 120:3191–3208 [CrossRef][PubMed]
    [Google Scholar]
  25. Staras S. A., Dollard S. C., Radford K. W., Flanders W. D., Pass R. F., Cannon M. J. 2006; Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis 43:1143–1151 [CrossRef][PubMed]
    [Google Scholar]
  26. Stern J. L., Slobedman B. 2008; Human cytomegalovirus latent infection of myeloid cells directs monocyte migration by up-regulating monocyte chemotactic protein-1. J Immunol 180:6577–6585[PubMed] [CrossRef]
    [Google Scholar]
  27. Stropes M. P., Miller W. E. 2008; Functional analysis of human cytomegalovirus pUS28 mutants in infected cells. J Gen Virol 89:97–105 [CrossRef][PubMed]
    [Google Scholar]
  28. van de Berg P. J., Heutinck K. M., Raabe R., Minnee R. C., Young S. L., van Donselaar-van der Pant K. A., Bemelman F. J., van Lier R. A., ten Berge I. J. 2010; Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. J Infect Dis 202:690–699 [CrossRef][PubMed]
    [Google Scholar]
  29. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002; Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11 [CrossRef]
    [Google Scholar]
  30. Xiaofei E., Stadler B. M., Debatis M., Wang S., Lu S., Kowalik T. F. 2012; RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J Virol 86:5660–5673 [CrossRef][PubMed]
    [Google Scholar]
  31. Yang C. H., Murti A., Pfeffer S. R., Basu L., Kim J. G., Pfeffer L. M. 2000; IFNα/β promotes cell survival by activating NF-κB. Proc Natl Acad Sci U S A 97:13631–13636 [CrossRef][PubMed]
    [Google Scholar]
  32. Yurochko A. D., Kowalik T. F., Huong S. M., Huang E. S. 1995; Human cytomegalovirus upregulates NF-κB activity by transactivating the NF-κB p105/p50 and p65 promoters. J Virol 69:5391–5400[PubMed]
    [Google Scholar]
  33. Zhu H., Cong J. P., Shenk T. 1997; Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proc Natl Acad Sci U S A 94:13985–13990 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052878-0
Loading
/content/journal/jgv/10.1099/vir.0.052878-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error