1887

Abstract

(VACV) encodes many proteins that antagonize the innate immune system including a family of intracellular proteins with a B-cell lymphoma (Bcl)-2-like structure. One of these Bcl-2 proteins called K7 binds Toll-like receptor-adaptor proteins and the DEAD-box RNA helicase DDX3 and thereby inhibits the activation of NF-κB and interferon regulatory factor 3. However, the contribution of K7 to virus virulence is not known. Here a VACV lacking the gene (vΔK7) was constructed and compared with control viruses that included a plaque purified wt (vK7), a revertant with the gene reinserted (vK7-rev) and a frame-shifted virus in which the translational initiation codon was mutated to prevent K7 protein expression (vK7-fs). Data presented show that loss of K7 does not affect virus replication in cell culture or ; however, viruses lacking the K7 protein were less virulent than controls in murine intradermal (i.d.) and intranasal (i.n.) infection models and there was an altered acute immune response to infection. In the i.d. model, vΔK7 induced smaller lesions than controls, and after i.n. infection vΔK7 induced a reduced weight loss and signs of illness, and more rapid clearance of virus from infected tissue. Concomitantly, the intrapulmonary innate immune response to infection with vΔK7 showed increased infiltration of NK cells and CD8 T-cells, enhanced MHC class II expression by macrophages, and enhanced cytolysis of target cells by NK cells and VACV-specific CD8 T-cells. Thus protein K7 is a virulence factor that affects the acute immune response to infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052670-0
2013-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1647.html?itemId=/content/journal/jgv/10.1099/vir.0.052670-0&mimeType=html&fmt=ahah

References

  1. Alcamí A. , Smith G. L. . ( 1992; ). A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. . Cell 71:, 153–167. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alcamí A. , Smith G. L. . ( 1995; ). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. . J Virol 69:, 4633–4639.[PubMed]
    [Google Scholar]
  3. Alcamí A. , Smith G. L. . ( 1996; ). A mechanism for the inhibition of fever by a virus. . Proc Natl Acad Sci U S A 93:, 11029–11034. [CrossRef] [PubMed]
    [Google Scholar]
  4. Antoine G. , Scheiflinger F. , Dorner F. , Falkner F. G. . ( 1998; ). The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. . Virology 244:, 365–396. [CrossRef] [PubMed]
    [Google Scholar]
  5. Aoyagi M. , Zhai D. , Jin C. , Aleshin A. E. , Stec B. , Reed J. C. , Liddington R. C. . ( 2007; ). Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. . Protein Sci 16:, 118–124. [CrossRef] [PubMed]
    [Google Scholar]
  6. Assarsson E. , Greenbaum J. A. , Sundström M. , Schaffer L. , Hammond J. A. , Pasquetto V. , Oseroff C. , Hendrickson R. C. , Lefkowitz E. J. . & other authors ( 2008; ). Kinetic analysis of a complete poxvirus transcriptome reveals an immediate-early class of genes. . Proc Natl Acad Sci U S A 105:, 2140–2145. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bahar M. W. , Kenyon J. C. , Putz M. M. , Abrescia N. G. , Pease J. E. , Wise E. L. , Stuart D. I. , Smith G. L. , Grimes J. M. . ( 2008; ). Structure and function of A41, a vaccinia virus chemokine binding protein. . PLoS Pathog 4:, e5. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bahar M. W. , Graham S. C. , Chen R. A. , Cooray S. , Smith G. L. , Stuart D. I. , Grimes J. M. . ( 2011; ). How vaccinia virus has evolved to subvert the host immune response. . J Struct Biol 175:, 127–134. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bartlett N. , Symons J. A. , Tscharke D. C. , Smith G. L. . ( 2002; ). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. . J Gen Virol 83:, 1965–1976.[PubMed]
    [Google Scholar]
  10. Benfield C. T. , Mansur D. S. , McCoy L. E. , Ferguson B. J. , Bahar M. W. , Oldring A. P. , Grimes J. M. , Stuart D. I. , Graham S. C. , Smith G. L. . ( 2011; ). Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. . J Biol Chem 286:, 20727–20735. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bennink J. R. , Yewdell J. W. , Smith G. L. , Moss B. . ( 1986; ). Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. . J Virol 57:, 786–791.[PubMed]
    [Google Scholar]
  12. Blanchard T. J. , Alcamí A. , Andrea P. , Smith G. L. . ( 1998; ). Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. . J Gen Virol 79:, 1159–1167.[PubMed]
    [Google Scholar]
  13. Bukowski J. F. , Woda B. A. , Habu S. , Okumura K. , Welsh R. M. . ( 1983; ). Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo . . J Immunol 131:, 1531–1538.[PubMed]
    [Google Scholar]
  14. Chen R. A. , Jacobs N. , Smith G. L. . ( 2006; ). Vaccinia virus strain Western Reserve protein B14 is an intracellular virulence factor. . J Gen Virol 87:, 1451–1458. [CrossRef] [PubMed]
    [Google Scholar]
  15. Chen R. A. , Ryzhakov G. , Cooray S. , Randow F. , Smith G. L. . ( 2008; ). Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. . PLoS Pathog 4:, e22. [CrossRef] [PubMed]
    [Google Scholar]
  16. Clark R. H. , Kenyon J. C. , Bartlett N. W. , Tscharke D. C. , Smith G. L. . ( 2006; ). Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. . J Gen Virol 87:, 29–38. [CrossRef] [PubMed]
    [Google Scholar]
  17. Colamonici O. R. , Domanski P. , Sweitzer S. M. , Larner A. , Buller R. M. . ( 1995; ). Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. . J Biol Chem 270:, 15974–15978. [CrossRef] [PubMed]
    [Google Scholar]
  18. Cooray S. , Bahar M. W. , Abrescia N. G. , McVey C. E. , Bartlett N. W. , Chen R. A. , Stuart D. I. , Grimes J. M. , Smith G. L. . ( 2007; ). Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. . J Gen Virol 88:, 1656–1666. [CrossRef] [PubMed]
    [Google Scholar]
  19. Cottingham M. G. , Andersen R. F. , Spencer A. J. , Saurya S. , Furze J. , Hill A. V. , Gilbert S. C. . ( 2008; ). Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA). . PLoS One 3, e1638.[CrossRef]
    [Google Scholar]
  20. Doceul V. , Hollinshead M. , van der Linden L. , Smith G. L. . ( 2010; ). Repulsion of superinfecting virions: a mechanism for rapid virus spread. . Science 327:, 873–876. [CrossRef] [PubMed]
    [Google Scholar]
  21. Fahy A. S. , Clark R. H. , Glyde E. F. , Smith G. L. . ( 2008; ). Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. . J Gen Virol 89:, 2377–2387. [CrossRef] [PubMed]
    [Google Scholar]
  22. Falivene J. , Del Médico Zajac M. P. , Pascutti M. F. , Rodríguez A. M. , Maeto C. , Perdiguero B. , Gómez C. E. , Esteban M. , Calamante G. , Gherardi M. M. . ( 2012; ). Improving the MVA vaccine potential by deleting the viral gene coding for the IL-18 binding protein. . PLoS ONE 7:, e32220. [CrossRef] [PubMed]
    [Google Scholar]
  23. Falkner F. G. , Moss B. . ( 1990; ). Transient dominant selection of recombinant vaccinia viruses. . J Virol 64:, 3108–3111.[PubMed]
    [Google Scholar]
  24. Fenner F. , Anderson D. A. , Arita I. , Jezek Z. , Ladnyi I. D. . ( 1988; ). Smallpox and its Eradication. Geneva:: World Health Organization;.
    [Google Scholar]
  25. García-Arriaza J. , Nájera J. L. , Gómez C. E. , Tewabe N. , Sorzano C. O. , Calandra T. , Roger T. , Esteban M. . ( 2011; ). A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. . PLoS ONE 6:, e24244. [CrossRef] [PubMed]
    [Google Scholar]
  26. Gómez C. E. , Perdiguero B. , Nájera J. L. , Sorzano C. O. , Jiménez V. , González-Sanz R. , Esteban M. . ( 2012; ). Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice. . J Virol 86:, 5026–5038. [CrossRef] [PubMed]
    [Google Scholar]
  27. González J. M. , Esteban M. . ( 2010; ). A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. . Virol J 7:, 59. [CrossRef] [PubMed]
    [Google Scholar]
  28. Goulding J. , Bogue R. , Tahiliani V. , Croft M. , Salek-Ardakani S. . ( 2012; ). CD8 T cells are essential for recovery from a respiratory vaccinia virus infection. . J Immunol 189:, 2432–2440. [CrossRef] [PubMed]
    [Google Scholar]
  29. Graham S. C. , Bahar M. W. , Cooray S. , Chen R. A. , Whalen D. M. , Abrescia N. G. , Alderton D. , Owens R. J. , Stuart D. I. . & other authors ( 2008; ). Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. . PLoS Pathog 4:, e1000128. [CrossRef] [PubMed]
    [Google Scholar]
  30. Harte M. T. , Haga I. R. , Maloney G. , Gray P. , Reading P. C. , Bartlett N. W. , Smith G. L. , Bowie A. , O’Neill L. A. . ( 2003; ). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. . J Exp Med 197:, 343–351. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hughes S. J. , Johnston L. H. , de Carlos A. , Smith G. L. . ( 1991; ). Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae . . J Biol Chem 266:, 20103–20109.[PubMed]
    [Google Scholar]
  32. Jacobs N. , Chen R. A. , Gubser C. , Najarro P. , Smith G. L. . ( 2006; ). Intradermal immune response after infection with Vaccinia virus . . J Gen Virol 87:, 1157–1161. [CrossRef] [PubMed]
    [Google Scholar]
  33. Jacobs N. , Bartlett N. W. , Clark R. H. , Smith G. L. . ( 2008; ). Vaccinia virus lacking the Bcl-2-like protein N1 induces a stronger natural killer cell response to infection. . J Gen Virol 89:, 2877–2881. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kalverda A. P. , Thompson G. S. , Vogel A. , Schröder M. , Bowie A. G. , Khan A. R. , Homans S. W. . ( 2009; ). Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. . J Mol Biol 385:, 843–853. [CrossRef] [PubMed]
    [Google Scholar]
  35. Kotwal G. J. , Hügin A. W. , Moss B. . ( 1989; ). Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. . Virology 171:, 579–587. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kvansakul M. , Yang H. , Fairlie W. D. , Czabotar P. E. , Fischer S. F. , Perugini M. A. , Huang D. C. , Colman P. M. . ( 2008; ). Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. . Cell Death Differ 15:, 1564–1571. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lane J. M. , Ruben F. L. , Neff J. M. , Millar J. D. . ( 1969; ). Complications of smallpox vaccination, 1968. . N Engl J Med 281:, 1201–1208. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lathe R. , Kieny M. P. , Gerlinger P. , Clertant P. , Guizani I. , Cuzin F. , Chambon P. . ( 1987; ). Tumour prevention and rejection with recombinant vaccinia. . Nature 326:, 878–880. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mackett M. , Smith G. L. , Moss B. . ( 1982; ). Vaccinia virus: a selectable eukaryotic cloning and expression vector. . Proc Natl Acad Sci U S A 79:, 7415–7419. [CrossRef] [PubMed]
    [Google Scholar]
  40. Maluquer de Motes C. , Cooray S. , Ren H. , Almeida G. M. , McGourty K. , Bahar M. W. , Stuart D. I. , Grimes J. M. , Graham S. C. , Smith G. L. . ( 2011; ). Inhibition of apoptosis and NF-κB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. . PLoS Pathog 7:, e1002430. [CrossRef] [PubMed]
    [Google Scholar]
  41. Martinez J. , Huang X. , Yang Y. . ( 2010; ). Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection. . PLoS Pathog 6:, e1000811. [CrossRef] [PubMed]
    [Google Scholar]
  42. Moore J. B. , Smith G. L. . ( 1992; ). Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. . EMBO J 11:, 1973–1980.[PubMed]
    [Google Scholar]
  43. Moss B. . ( 2007; ). Poxviridae: the viruses and their replicaton. . In Fields Virology, , 5th edn., pp. 2905–2946. Edited by Knipe D. M. , Howley P. M. , Griffin D. E. , Lamb R. A. , Martin M. A. , Roizman B. , Straus S. E. . . Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  44. Mossman K. , Upton C. , Buller R. M. , McFadden G. . ( 1995; ). Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. . Virology 208:, 762–769. [CrossRef] [PubMed]
    [Google Scholar]
  45. Mulhern O. , Bowie A. G. . ( 2010; ). Unexpected roles for DEAD-box protein 3 in viral RNA sensing pathways. . Eur J Immunol 40:, 933–935. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ng A. , Tscharke D. C. , Reading P. C. , Smith G. L. . ( 2001; ). The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. . J Gen Virol 82:, 2095–2105.[PubMed]
    [Google Scholar]
  47. Oda S. , Schröder M. , Khan A. R. . ( 2009; ). Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. . Structure 17:, 1528–1537. [CrossRef] [PubMed]
    [Google Scholar]
  48. Osman M. , Kubo T. , Gill J. , Neipel F. , Becker M. , Smith G. , Weiss R. , Gazzard B. , Boshoff C. , Gotch F. . ( 1999; ). Identification of human herpesvirus 8-specific cytotoxic T-cell responses. . J Virol 73:, 6136–6140.[PubMed]
    [Google Scholar]
  49. Panicali D. , Paoletti E. . ( 1982; ). Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. . Proc Natl Acad Sci U S A 79:, 4927–4931. [CrossRef] [PubMed]
    [Google Scholar]
  50. Panicali D. , Davis S. W. , Weinberg R. L. , Paoletti E. . ( 1983; ). Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant Vaccinia virus expressing influenza virus hemagglutinin. . Proc Natl Acad Sci U S A 80:, 5364–5368. [CrossRef] [PubMed]
    [Google Scholar]
  51. Parker A. K. , Parker S. , Yokoyama W. M. , Corbett J. A. , Buller R. M. . ( 2007; ). Induction of natural killer cell responses by ectromelia virus controls infection. . J Virol 81:, 4070–4079. [CrossRef] [PubMed]
    [Google Scholar]
  52. Parkinson J. E. , Smith G. L. . ( 1994; ). Vaccinia virus gene A36R encodes a M(r) 43–50 K protein on the surface of extracellular enveloped virus. . Virology 204:, 376–390. [CrossRef] [PubMed]
    [Google Scholar]
  53. Reading P. C. , Smith G. L. . ( 2003a; ). A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. . J Gen Virol 84:, 1973–1983. [CrossRef] [PubMed]
    [Google Scholar]
  54. Reading P. C. , Smith G. L. . ( 2003b; ). Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. . J Virol 77:, 9960–9968. [CrossRef] [PubMed]
    [Google Scholar]
  55. Reading P. C. , Moore J. B. , Smith G. L. . ( 2003a; ). Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. . J Exp Med 197:, 1269–1278. [CrossRef] [PubMed]
    [Google Scholar]
  56. Reading P. C. , Symons J. A. , Smith G. L. . ( 2003b; ). A soluble chemokine-binding protein from vaccinia virus reduces virus virulence and the inflammatory response to infection. . J Immunol 170:, 1435–1442.[PubMed] [CrossRef]
    [Google Scholar]
  57. Schröder M. , Baran M. , Bowie A. G. . ( 2008; ). Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. . EMBO J 27:, 2147–2157. [CrossRef] [PubMed]
    [Google Scholar]
  58. Seet B. T. , Johnston J. B. , Brunetti C. R. , Barrett J. W. , Everett H. , Cameron C. , Sypula J. , Nazarian S. H. , Lucas A. , McFadden G. . ( 2003; ). Poxviruses and immune evasion. . Annu Rev Immunol 21:, 377–423. [CrossRef] [PubMed]
    [Google Scholar]
  59. Smith G. L. , Mackett M. , Moss B. . ( 1983a; ). Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. . Nature 302:, 490–495. [CrossRef] [PubMed]
    [Google Scholar]
  60. Smith G. L. , Murphy B. R. , Moss B. . ( 1983b; ). Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. . Proc Natl Acad Sci U S A 80:, 7155–7159. [CrossRef] [PubMed]
    [Google Scholar]
  61. Smith G. L. , Symons J. A. , Khanna A. , Vanderplasschen A. , Alcamí A. . ( 1997; ). Vaccinia virus immune evasion. . Immunol Rev 159:, 137–154. [CrossRef] [PubMed]
    [Google Scholar]
  62. Smith V. P. , Bryant N. A. , Alcamí A. . ( 2000; ). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. . J Gen Virol 81:, 1223–1230.[PubMed]
    [Google Scholar]
  63. Soulat D. , Bürckstümmer T. , Westermayer S. , Goncalves A. , Bauch A. , Stefanovic A. , Hantschel O. , Bennett K. L. , Decker T. , Superti-Furga G. . ( 2008; ). The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. . EMBO J 27:, 2135–2146. [CrossRef] [PubMed]
    [Google Scholar]
  64. Spriggs M. K. , Hruby D. E. , Maliszewski C. R. , Pickup D. J. , Sims J. E. , Buller R. M. , VanSlyke J. . ( 1992; ). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. . Cell 71:, 145–152. [CrossRef] [PubMed]
    [Google Scholar]
  65. Stack J. , Haga I. R. , Schröder M. , Bartlett N. W. , Maloney G. , Reading P. C. , Fitzgerald K. A. , Smith G. L. , Bowie A. G. . ( 2005; ). Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. . J Exp Med 201:, 1007–1018. [CrossRef] [PubMed]
    [Google Scholar]
  66. Staib C. , Kisling S. , Erfle V. , Sutter G. . ( 2005; ). Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. . J Gen Virol 86:, 1997–2006. [CrossRef] [PubMed]
    [Google Scholar]
  67. Sumner R. P. , Ren H. , Smith G. L. . ( 2013; ). Deletion of immunomodulator C6 from vaccinia virus strain Western Reserve enhances virus immunogenicity and vaccine efficacy. . J Gen Virol 94:, 1121–1126. [CrossRef] [PubMed]
    [Google Scholar]
  68. Sutter G. , Staib C. . ( 2003; ). Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. . Curr Drug Targets Infect Disord 3:, 263–271. [CrossRef] [PubMed]
    [Google Scholar]
  69. Symons J. A. , Alcamí A. , Smith G. L. . ( 1995; ). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. . Cell 81:, 551–560. [CrossRef] [PubMed]
    [Google Scholar]
  70. Tscharke D. C. , Smith G. L. . ( 1999; ). A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. . J Gen Virol 80:, 2751–2755.[PubMed]
    [Google Scholar]
  71. Tscharke D. C. , Reading P. C. , Smith G. L. . ( 2002; ). Dermal infection with Vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. . J Gen Virol 83:, 1977–1986.[PubMed]
    [Google Scholar]
  72. Unterholzner L. , Sumner R. P. , Baran M. , Ren H. , Mansur D. S. , Bourke N. M. , Randow F. , Smith G. L. , Bowie A. G. . ( 2011; ). Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7. . PLoS Pathog 7:, e1002247. [CrossRef] [PubMed]
    [Google Scholar]
  73. Walsh S. R. , Dolin R. . ( 2011; ). Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. . Expert Rev Vaccines 10:, 1221–1240. [CrossRef] [PubMed]
    [Google Scholar]
  74. Williamson J. D. , Reith R. W. , Jeffrey L. J. , Arrand J. R. , Mackett M. . ( 1990; ). Biological characterization of recombinant vaccinia viruses in mice infected by the respiratory route. . J Gen Virol 71:, 2761–2767. [CrossRef] [PubMed]
    [Google Scholar]
  75. Xu R. , Johnson A. J. , Liggitt D. , Bevan M. J. . ( 2004; ). Cellular and humoral immunity against vaccinia virus infection of mice. . J Immunol 172:, 6265–6271.[PubMed] [CrossRef]
    [Google Scholar]
  76. Yang Z. , Bruno D. P. , Martens C. A. , Porcella S. F. , Moss B. . ( 2010; ). Simultaneous high-resolution analysis of vaccinia virus and host cell transcriptomes by deep RNA sequencing. . Proc Natl Acad Sci U S A 107:, 11513–11518. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052670-0
Loading
/content/journal/jgv/10.1099/vir.0.052670-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error