1887

Abstract

The underlying mechanisms allowing (WNV) to replicate in a large variety of different arthropod, bird and mammal species are largely unknown but are believed to rely on highly conserved proteins relevant for viral entry and replication. Consistent with this, the integrin αvβ3 has been proposed lately to function as the cellular receptor for WNV. More recently published data, however, are not in line with this concept. Integrins are highly conserved among diverse taxa and are expressed by almost every cell type at high numbers. Our study was designed to clarify the involvement of integrins in WNV infection of cells. A cell culture model, based on wild-type and specific integrin knockout cell lines lacking the integrin subunits αv, β1 or β3, was used to investigate the susceptibility to WNV, and to evaluate binding and replication efficiencies of four distinct strains (New York 1999, Uganda 1937, Sarafend and Dakar). Though all cell lines were permissive, clear differences in replication efficiencies were observed. Rescue of the β3-integrin subunit resulted in enhanced WNV yields of up to 90 %, regardless of the virus strain used. Similar results were obtained for β1-expressing and non-expressing cells. Binding, however, was not affected by the expression of the integrins in question, and integrin blocking antibodies failed to have any effect. We conclude that integrins are involved in WNV infection but not at the level of binding to target cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052613-0
2013-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1723.html?itemId=/content/journal/jgv/10.1099/vir.0.052613-0&mimeType=html&fmt=ahah

References

  1. Bader B. L. , Rayburn H. , Crowley D. , Hynes R. O. . ( 1998; ). Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. . Cell 95:, 507–519. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baron W. , Decker L. , Colognato H. , ffrench-Constant C. . ( 2003; ). Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. . Curr Biol 13:, 151–155. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bielefeldt-Ohmann H. , Meyer M. , Fitzpatrick D. R. , Mackenzie J. S. . ( 2001; ). Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. . Virus Res 73:, 81–89. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brinton M. A. . ( 2001; ). Host factors involved in West Nile virus replication. . Ann N Y Acad Sci 951:, 207–219. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brinton M. A. . ( 2002; ). The molecular biology of West Nile Virus: a new invader of the western hemisphere. . Annu Rev Microbiol 56:, 371–402. [CrossRef] [PubMed]
    [Google Scholar]
  6. Caswell P. T. , Vadrevu S. , Norman J. C. . ( 2009; ). Integrins: masters and slaves of endocytic transport. . Nat Rev Mol Cell Biol 10:, 843–853. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chu J. J. , Ng M. L. . ( 2004; ). Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. . J Biol Chem 279:, 54533–54541. [CrossRef] [PubMed]
    [Google Scholar]
  8. Clark E. A. , Brugge J. S. . ( 1995; ). Integrins and signal transduction pathways: the road taken. . Science 268:, 233–239. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dietrich G. , Montenieri J. A. , Panella N. A. , Langevin S. , Lasater S. E. , Klenk K. , Kile J. C. , Komar N. . ( 2005; ). Serologic evidence of West Nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. . Vector Borne Zoonotic Dis 5:, 288–292. [CrossRef] [PubMed]
    [Google Scholar]
  10. Eiden M. , Vina-Rodriguez A. , Hoffmann B. , Ziegler U. , Groschup M. H. . ( 2010; ). Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. . J Vet Diagn Invest 22:, 748–753. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gahmberg C. G. , Fagerholm S. C. , Nurmi S. M. , Chavakis T. , Marchesan S. , Grönholm M. . ( 2009; ). Regulation of integrin activity and signalling. . Biochim Biophys Acta 1790:, 431–444. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gao S. , Du J. , Zhou J. , Chang H. , Xie Q. . ( 2008; ). Integrin activation and viral infection. . Virol Sin 23:, 1–7. [CrossRef]
    [Google Scholar]
  13. Gavrilovskaya I. N. , Shepley M. , Shaw R. , Ginsberg M. H. , Mackow E. R. . ( 1998; ). beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. . Proc Natl Acad Sci U S A 95:, 7074–7079. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gavrilovskaya I. N. , Brown E. J. , Ginsberg M. H. , Mackow E. R. . ( 1999; ). Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. . J Virol 73:, 3951–3959.[PubMed]
    [Google Scholar]
  15. Giancotti F. G. , Ruoslahti E. . ( 1999; ). Integrin signaling. . Science 285:, 1028–1033. [CrossRef] [PubMed]
    [Google Scholar]
  16. Giancotti F. G. , Tarone G. . ( 2003; ). Positional control of cell fate through joint integrin/receptor protein kinase signaling. . Annu Rev Cell Dev Biol 19:, 173–206. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gianni T. , Cerretani A. , Dubois R. , Salvioli S. , Blystone S. S. , Rey F. , Campadelli-Fiume G. . ( 2010a; ). Herpes simplex virus glycoproteins H/L bind to cells independently of . αVβ3 integrin and inhibit virus entry, and their constitutive expression restricts infection. . J Virol 84:, 4013–4025. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gianni T. , Gatta V. , Campadelli-Fiume G. . ( 2010b; ). αVβ3 -integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. . Proc Natl Acad Sci U S A 107:, 22260–22265. [CrossRef] [PubMed]
    [Google Scholar]
  19. Heikkilä O. , Susi P. , Tevaluoto T. , Härmä H. , Marjomäki V. , Hyypiä T. , Kiljunen S. . ( 2010; ). Internalization of coxsackievirus A9 is mediated by beta2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. . J Virol 84:, 3666–3681. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hodivala-Dilke K. M. , McHugh K. P. , Tsakiris D. A. , Rayburn H. , Crowley D. , Ullman-Culleré M. , Ross F. P. , Coller B. S. , Teitelbaum S. , Hynes R. O. . ( 1999; ). Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. . J Clin Invest 103:, 229–238. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hung S. L. , Lee P. L. , Chen H. W. , Chen L. K. , Kao C. L. , King C. C. . ( 1999; ). Analysis of the steps involved in Dengue virus entry into host cells. . Virology 257:, 156–167. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hurlbut H. S. , Rizk F. , Taylor R. M. , Work T. H. . ( 1956; ). A study of the ecology of West Nile virus in Egypt. . Am J Trop Med Hyg 5:, 579–620.[PubMed]
    [Google Scholar]
  23. Hynes R. O. . ( 2002; ). Integrins: bidirectional, allosteric signaling machines. . Cell 110:, 673–687. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hynes R. O. , Hodivala-Dilke K. M. . ( 1999; ). Insights and questions arising from studies of a mouse model of Glanzmann thrombasthenia. . Thromb Haemost 82:, 481–485.[PubMed]
    [Google Scholar]
  25. Knudsen K. A. , Damsky C. H. , Buck C. A. . ( 1982; ). Expression of adhesion-related membrane components in adherent versus nonadherent hamster melanoma cells. . J Cell Biochem 18:, 157–167. [CrossRef] [PubMed]
    [Google Scholar]
  26. Krauss K. , Altevogt P. . ( 1999; ). Integrin leukocyte function-associated antigen-1-mediated cell binding can be activated by clustering of membrane rafts. . J Biol Chem 274:, 36921–36927. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kusano Y. , Oguri K. , Nagayasu Y. , Munesue S. , Ishihara M. , Saiki I. , Yonekura H. , Yamamoto H. , Okayama M. . ( 2000; ). Participation of syndecan 2 in the induction of stress fiber formation in cooperation with integrin alpha5beta1: structural characteristics of heparan sulfate chains with avidity to COOH-terminal heparin-binding domain of fibronectin. . Exp Cell Res 256:, 434–444. [CrossRef] [PubMed]
    [Google Scholar]
  28. Li E. , Brown S. L. , Stupack D. G. , Puente X. S. , Cheresh D. A. , Nemerow G. R. . ( 2001; ). Integrin alpha(v)beta1 is an adenovirus coreceptor. . J Virol 75:, 5405–5409. [CrossRef] [PubMed]
    [Google Scholar]
  29. Liu H. , Chiou S. S. , Chen W. J. . ( 2004; ). Differential binding efficiency between the envelope protein of Japanese encephalitis virus variants and heparan sulfate on the cell surface. . J Med Virol 72:, 618–624. [CrossRef] [PubMed]
    [Google Scholar]
  30. Liu S. , Shi-wen X. , Blumbach K. , Eastwood M. , Denton C. P. , Eckes B. , Krieg T. , Abraham D. J. , Leask A. . ( 2010; ). Expression of integrin beta1 by fibroblasts is required for tissue repair in vivo. . J Cell Sci 123:, 3674–3682. [CrossRef] [PubMed]
    [Google Scholar]
  31. Marsh M. , Helenius A. . ( 1989; ). Virus entry into animal cells. . Adv Virus Res 36:, 107–151. [CrossRef] [PubMed]
    [Google Scholar]
  32. McCarty J. H. , Monahan-Earley R. A. , Brown L. F. , Keller M. , Gerhardt H. , Rubin K. , Shani M. , Dvorak H. F. , Wolburg H. . & other authors ( 2002; ). Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. . Mol Cell Biol 22:, 7667–7677. [CrossRef] [PubMed]
    [Google Scholar]
  33. Medigeshi G. R. , Hirsch A. J. , Streblow D. N. , Nikolich-Zugich J. , Nelson J. A. . ( 2008; ). West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of . αVβ3 integrin. . J Virol 82:, 5212–5219. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mostashari F. , Bunning M. L. , Kitsutani P. T. , Singer D. A. , Nash D. , Cooper M. J. , Katz N. , Liljebjelke K. A. , Biggerstaff B. J. . & other authors ( 2001; ). Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. . Lancet 358:, 261–264. [CrossRef] [PubMed]
    [Google Scholar]
  35. Murgue B. , Murri S. , Zientara S. , Durand B. , Durand J. P. , Zeller H. . ( 2001; ). West Nile outbreak in horses in southern France, 2000: the return after 35 years. . Emerg Infect Dis 7:, 692–696.[PubMed] [CrossRef]
    [Google Scholar]
  36. Neff S. , Sá-Carvalho D. , Rieder E. , Mason P. W. , Blystone S. D. , Brown E. J. , Baxt B. . ( 1998; ). Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. . J Virol 72:, 3587–3594.[PubMed]
    [Google Scholar]
  37. Nelsen-Salz B. , Eggers H. J. , Zimmermann H. . ( 1999; ). Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. . J Gen Virol 80:, 2311–2313.[PubMed]
    [Google Scholar]
  38. Petersen L. R. , Roehrig J. T. . ( 2001; ). West Nile virus: a reemerging global pathogen. . Emerg Infect Dis 7:, 611–614.[PubMed] [CrossRef]
    [Google Scholar]
  39. Piali L. , Hammel P. , Uherek C. , Bachmann F. , Gisler R. H. , Dunon D. , Imhof B. A. . ( 1995; ). CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. . J Cell Biol 130:, 451–460. [CrossRef] [PubMed]
    [Google Scholar]
  40. Pietiäinen V. , Marjomäki V. , Upla P. , Pelkmans L. , Helenius A. , Hyypiä T. . ( 2004; ). Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. . Mol Biol Cell 15:, 4911–4925. [CrossRef] [PubMed]
    [Google Scholar]
  41. Reynolds L. E. , Wyder L. , Lively J. C. , Taverna D. , Robinson S. D. , Huang X. , Sheppard D. , Hynes R. O. , Hodivala-Dilke K. M. . ( 2002; ). Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. . Nat Med 8:, 27–34. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ridger V. C. , Wagner B. E. , Wallace W. A. , Hellewell P. G. . ( 2001; ). Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. . J Immunol 166:, 3484–3490.[PubMed] [CrossRef]
    [Google Scholar]
  43. Roivainen M. , Piirainen L. , Hovi T. , Virtanen I. , Riikonen T. , Heino J. , Hyypiä T. . ( 1994; ). Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. . Virology 203:, 357–365. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sangaletti S. , Di Carlo E. , Gariboldi S. , Miotti S. , Cappetti B. , Parenza M. , Rumio C. , Brekken R. A. , Chiodoni C. , Colombo M. P. . ( 2008; ). Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. . Cancer Res 68:, 9050–9059. [CrossRef] [PubMed]
    [Google Scholar]
  45. Scheirer C. J. , Ray W. S. , Hare N. . ( 1976; ). The analysis of ranked data derived from completely randomized factorial designs. . Biometrics 32:, 429–434. [CrossRef] [PubMed]
    [Google Scholar]
  46. Schneider-Schaulies J. . ( 2000; ). Cellular receptors for viruses: links to tropism and pathogenesis. . J Gen Virol 81:, 1413–1429.[PubMed]
    [Google Scholar]
  47. Thomas L. , Chan P. W. , Chang S. , Damsky C. . ( 1993; ). 5-Bromo-2-deoxyuridine regulates invasiveness and expression of integrins and matrix-degrading proteinases in a differentiated hamster melanoma cell. . J Cell Sci 105:, 191–201.[PubMed]
    [Google Scholar]
  48. Triantafilou K. , Takada Y. , Triantafilou M. . ( 2001; ). Mechanisms of integrin-mediated virus attachment and internalization process. . Crit Rev Immunol 21:, 311–322. [CrossRef] [PubMed]
    [Google Scholar]
  49. van der Meulen K. M. , Pensaert M. B. , Nauwynck H. J. . ( 2005; ). West Nile virus in the vertebrate world. . Arch Virol 150:, 637–657. [CrossRef] [PubMed]
    [Google Scholar]
  50. Walker J. L. , Fournier A. K. , Assoian R. K. . ( 2005; ). Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. . Cytokine Growth Factor Rev 16:, 395–405. [CrossRef] [PubMed]
    [Google Scholar]
  51. Wickham T. J. , Mathias P. , Cheresh D. A. , Nemerow G. R. . ( 1993; ). Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. . Cell 73:, 309–319. [CrossRef] [PubMed]
    [Google Scholar]
  52. Work T. H. , Hurlbut H. S. , Taylor R. M. . ( 1955; ). Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs. . Am J Trop Med Hyg 4:, 872–888.[PubMed]
    [Google Scholar]
  53. Yamada K. M. , Miyamoto S. . ( 1995; ). Integrin transmembrane signaling and cytoskeletal control. . Curr Opin Cell Biol 7:, 681–689. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zhang J. L. , Wang J. L. , Gao N. , Chen Z. T. , Tian Y. P. , An J. . ( 2007; ). Up-regulated expression of beta3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. . Biochem Biophys Res Commun 356:, 763–768. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052613-0
Loading
/content/journal/jgv/10.1099/vir.0.052613-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error