1887

Abstract

To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an model was performed with consecutive passages of the ‘Challenge’ strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies or after vaccination (as estimated by the model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052555-0
2013-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/9/2050.html?itemId=/content/journal/jgv/10.1099/vir.0.052555-0&mimeType=html&fmt=ahah

References

  1. Bergeron J., Hébert B., Tijssen P.. ( 1996; ). Genome organization of the Kresse strain of porcine parvovirus: identification of the allotropic determinant and comparison with those of NADL-2 and field isolates. . J Virol 70:, 2508–2515.[PubMed]
    [Google Scholar]
  2. Cadar D., Dán Á., Tombácz K., Lőrincz M., Kiss T., Becskei Z., Spînu M., Tuboly T., Cságola A.. ( 2012; ). Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. . Infect Genet Evol 12:, 1163–1171. [CrossRef] [PubMed]
    [Google Scholar]
  3. Drummond A. J., Rambaut A.. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  4. Drummond A., Pybus O. G., Rambaut A.. ( 2003; ). Inference of viral evolutionary rates from molecular sequences. . Adv Parasitol 54:, 331–358. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fernandes S., Boisvert M., Tijssen P.. ( 2011; ). Genetic elements in the VP region of porcine parvovirus are critical to replication efficiency in cell culture. . J Virol 85:, 3025–3029. [CrossRef] [PubMed]
    [Google Scholar]
  6. Halloran M. E., Holmes E. C.. ( 2009; ). Invited commentary: evaluating vaccination programs using genetic sequence data. . Am J Epidemiol 170:, 1464–1466, discussion 1467–1468. [CrossRef] [PubMed]
    [Google Scholar]
  7. Jóźwik A., Manteufel J., Selbitz H. J., Truyen U.. ( 2009; ). Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain. . J Gen Virol 90:, 2437–2441. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kass R. E., Raftery A. E.. ( 1995; ). Bayes factors. . J Am Stat Assoc 90:, 773–795. [CrossRef]
    [Google Scholar]
  9. Martins Soares R., Cortez A., Heinemann M. B., Sakamoto S. M., Martins V. G., Bacci M. Jr, De Campos Fernandes F. M., Richtzenhain L. J.. ( 2003; ). Genetic variability of porcine parvovirus isolates revealed by analysis of partial sequences of the structural coding gene VP2. . J Gen Virol 84:, 1505–1515. [CrossRef] [PubMed]
    [Google Scholar]
  10. Mengeling W. L.. ( 1975; ). Porcine parvovirus: frequency of naturally occurring transplacental infection and viral contamination of fetal porcine kidney cell cultures. . Am J Vet Res 36:, 41–44.[PubMed]
    [Google Scholar]
  11. Newton M. A., Raftery A. E.. ( 1994; ). Approximate Bayesian inference with the weighted likelihood bootstrap. . J R Stat Soc B 56:, 3–48.
    [Google Scholar]
  12. Simpson A. A., Hébert B., Sullivan G. M., Parrish C. R., Zádori Z., Tijssen P., Rossmann M. G.. ( 2002; ). The structure of porcine parvovirus: comparison with related viruses. . J Mol Biol 315:, 1189–1198. [CrossRef] [PubMed]
    [Google Scholar]
  13. Streck A. F., Bonatto S. L., Homeier T., Souza C. K., Gonçalves K. R., Gava D., Canal C. W., Truyen U.. ( 2011; ). High rate of viral evolution in the capsid protein of porcine parvovirus. . J Gen Virol 92:, 2628–2636. [CrossRef] [PubMed]
    [Google Scholar]
  14. Suchard M. A., Redelings B. D.. ( 2006; ). BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. . Bioinformatics 22:, 2047–2048. [CrossRef] [PubMed]
    [Google Scholar]
  15. Truyen U., Streck A. F.. ( 2012; ). Porcine parvovirus. . In Diseases of Swine, , 10th edn., pp. 447–455. Edited by Zimmerman J., Karriker L., Ramirez A., Schwartz K., Stevenson G... Oxford:: John Wiley & Sons;.
    [Google Scholar]
  16. van Ballegooijen W. M., van Houdt R., Bruisten S. M., Boot H. J., Coutinho R. A., Wallinga J.. ( 2009; ). Molecular sequence data of hepatitis B virus and genetic diversity after vaccination. . Am J Epidemiol 170:, 1455–1463. [CrossRef] [PubMed]
    [Google Scholar]
  17. Yang Z.. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. . Comput Appl Biosci 13:, 555–556.[PubMed]
    [Google Scholar]
  18. Zeeuw E. J. L., Leinecker N., Herwig V., Selbitz H. J., Truyen U.. ( 2007; ). Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. . J Gen Virol 88:, 420–427. [CrossRef] [PubMed]
    [Google Scholar]
  19. Zimmermann P., Ritzmann M., Selbitz H. J., Heinritzi K., Truyen U.. ( 2006; ). VP1 sequences of German porcine parvovirus isolates define two genetic lineages. . J Gen Virol 87:, 295–301. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052555-0
Loading
/content/journal/jgv/10.1099/vir.0.052555-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error