1887

Abstract

Humans are the sole reservoir for mumps virus (MuV), the causative agent of mumps. No animal model currently exists; therefore, knowledge of the virus is limited. Ferrets were assessed for their susceptibility to MuV based on their success as a model for influenza. We infected ferrets with clinical or attenuated vaccine MuVs by the nasal route and demonstrated evidence of immunogenicity in these animals with generation of a serum antibody response specific to MuV infection and cytokine production consistent with infection. However, no live virus or viral RNA was detected in nasal washes, oral swabs, urine, faeces or tissue homogenates, and no animals exhibited clinical signs. We suggest results to be obtained from ferrets are limited in fundamental MuV research and that they may not be a suitable animal model for this virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052449-0
2013-06-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1200.html?itemId=/content/journal/jgv/10.1099/vir.0.052449-0&mimeType=html&fmt=ahah

References

  1. Afzal M. A., Dussupt V., Minor P. D., Pipkin P. A., Fleck R., Hockley D. J., Stacey G. N.. ( 2005;). Assessment of mumps virus growth on various continuous cell lines by virological, immunological, molecular and morphological investigations. . J Virol Methods 126:, 149–156. [CrossRef][PubMed]
    [Google Scholar]
  2. Andrewes C. H., Bang F. B., Burnet F. M.. ( 1955;). A short description of the Myxovirus group (influenza and related viruses). . Virology 1:, 176–184. [CrossRef][PubMed]
    [Google Scholar]
  3. Binder G. K., Griffin D. E.. ( 2001;). Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. . Science 293:, 303–306. [CrossRef][PubMed]
    [Google Scholar]
  4. Bossert B., Conzelmann K. K.. ( 2002;). Respiratory syncytial virus (RSV) nonstructural (NS) proteins as host range determinants: a chimeric bovine RSV with NS genes from human RSV is attenuated in interferon-competent bovine cells. . J Virol 76:, 4287–4293. [CrossRef][PubMed]
    [Google Scholar]
  5. Carbone K. M., Rubin S.. ( 2007;). Mumps virus. . In Fields Virology, , 6th edn., pp. 1527–1550. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott, Williams and Wilkins;.
    [Google Scholar]
  6. Chu L. W., Morgan H. R.. ( 1950;). Studies of the hemolysis of red blood cells by mumps virus: II. The relationships of hemagglutination, virus elution, and hemolysis. . J Exp Med 91:, 403–416. [CrossRef][PubMed]
    [Google Scholar]
  7. Cohen B. J., Audet S., Andrews N., Beeler J., Red W. W. G. M. P..WHO working group on measles plaque reduction neutralization test ( 2007;). Plaque reduction neutralization test for measles antibodies: Description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. . Vaccine 26:, 59–66. [CrossRef][PubMed]
    [Google Scholar]
  8. Enders J. F., Kane L. W., Cohen S., Levens J. H.. ( 1945;). Immunity in mumps I. Experiments with monkeys (Macacus mulatta). The development of complement-fixing antibody following infection and experiments on immunization by means of inactivated virus and convalescent human serum. . J Exp Med 81:, 93–117. [CrossRef][PubMed]
    [Google Scholar]
  9. Ferm V. H., Kilham L.. ( 1963;). Mumps virus infection of the pregnant hamster. . J Embryol Exp Morphol 11:, 659–665.[PubMed]
    [Google Scholar]
  10. Gordon I., Pavri K., Cohen S. M.. ( 1956;). Response of ferrets to mumps virus. . J Immunol 76:, 328–333.[PubMed]
    [Google Scholar]
  11. Houard S., Varsanyi T. M., Milican F., Norrby E., Bollen A.. ( 1995;). Protection of hamsters against experimental mumps virus (MuV) infection by antibodies raised against the MuV surface glycoproteins expressed from recombinant vaccinia virus vectors. . J Gen Virol 76:, 421–423. [CrossRef][PubMed]
    [Google Scholar]
  12. Ichiyama T., Maeba S., Suenaga N., Saito K., Matsubara T., Furukawa S.. ( 2005;). Analysis of cytokine levels in cerebrospinal fluid in mumps meningitis: comparison with echovirus type 30 meningitis. . Cytokine 30:, 243–247. [CrossRef][PubMed]
    [Google Scholar]
  13. Johnson C. D., Goodpasture E. W.. ( 1934;). An investigation of the etiology of mumps. . J Exp Med 59:, 1–19. [CrossRef][PubMed]
    [Google Scholar]
  14. Kauffman C. A., Bergman A. G., O’Connor R. P.. ( 1982;). Distemper virus infection in ferrets: an animal model of measles-induced immunosuppression. . Clin Exp Immunol 47:, 617–625.[PubMed]
    [Google Scholar]
  15. Kündig T. M., Hengartner H., Zinkernagel R. M.. ( 1993;). T cell-dependent IFN-gamma exerts an antiviral effect in the central nervous system but not in peripheral solid organs. . J Immunol 150:, 2316–2321.[PubMed]
    [Google Scholar]
  16. Lowen A. C., Mubareka S., Tumpey T. M., García-Sastre A., Palese P.. ( 2006;). The guinea pig as a transmission model for human influenza viruses. . Proc Natl Acad Sci U S A 103:, 9988–9992. [CrossRef][PubMed]
    [Google Scholar]
  17. Maher J. A., DeStefano J.. ( 2004;). The ferret: an animal model to study influenza virus. . Lab Anim (NY) 33:, 50–53. [CrossRef][PubMed]
    [Google Scholar]
  18. Matsuoka Y., Lamirande E. W., Subbarao K.. (2009). The ferret model for influenza. . In Current Protocols in Microbiology, Chapter 15, Unit 15G 12.
    [Google Scholar]
  19. Mehta P. D., Thormar H.. ( 1979;). Immunological studies of subacute measles encephalitis in ferrets: similarities to human subacute sclerosing panencephalitis. . J Clin Microbiol 9:, 601–604.[PubMed]
    [Google Scholar]
  20. Nguyen D. T., Ludlow M., van Amerongen G., de Vries R. D., Yüksel S., Verburgh R. J., Osterhaus A. D., Duprex W. P., de Swart R. L.. ( 2012;). Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets. . Vaccine 30:, 5073–5080. [CrossRef][PubMed]
    [Google Scholar]
  21. Overman J. R.. ( 1954;). Antibody response of suckling mice to mumps virus. II. Relation of onset of antibody production to susceptibility to mumps virus infection. . J Immunol 73:, 249–255.[PubMed]
    [Google Scholar]
  22. Park M. S., García-Sastre A., Cros J. F., Basler C. F., Palese P.. ( 2003;). Newcastle disease virus V protein is a determinant of host range restriction. . J Virol 77:, 9522–9532. [CrossRef][PubMed]
    [Google Scholar]
  23. Patterson J. B., Thomis D. C., Hans S. L., Samuel C. E.. ( 1995;). Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. . Virology 210:, 508–511. [CrossRef][PubMed]
    [Google Scholar]
  24. Pipkin P. A., Afzal M. A., Heath A. B., Minor P. D.. ( 1999;). Assay of humoral immunity to mumps virus. . J Virol Methods 79:, 219–225. [CrossRef][PubMed]
    [Google Scholar]
  25. Rubin S., Mauldin J., Chumakov K., Vanderzanden J., Iskow R., Carbone K.. ( 2006;). Serological and phylogenetic evidence of monotypic immune responses to different mumps virus strains. . Vaccine 24:, 2662–2668. [CrossRef][PubMed]
    [Google Scholar]
  26. Svitek N., von Messling V.. ( 2007;). Early cytokine mRNA expression profiles predict Morbillivirus disease outcome in ferrets. . Virology 362:, 404–410. [CrossRef][PubMed]
    [Google Scholar]
  27. Tokuda M.. ( 1957;). Studies on mumps virus. III. Experimental studies in guinea pigs. . J Immunol 79:, 355–360.[PubMed]
    [Google Scholar]
  28. Tsurudome M., Yamada A., Hishiyama M., Ito Y.. ( 1987;). Replication of mumps virus in mouse: transient replication in lung and potential of systemic infection. . Arch Virol 97:, 167–179. [CrossRef][PubMed]
    [Google Scholar]
  29. van der Veen J., Sonderkamp H. J.. ( 1965;). Secondary antibody response of guinea pigs to parainfluenza and mumps viruses. . Arch Gesamte Virusforsch 15:, 721–734. [CrossRef][PubMed]
    [Google Scholar]
  30. Wollstein M.. ( 1916;). An experimental study of parotitis (mumps). . J Exp Med 23:, 353–375. [CrossRef][PubMed]
    [Google Scholar]
  31. Zamanian-Daryoush M., Mogensen T. H., DiDonato J. A., Williams B. R.. ( 2000;). NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. . Mol Cell Biol 20:, 1278–1290. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052449-0
Loading
/content/journal/jgv/10.1099/vir.0.052449-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Supplementary table 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error