1887

Abstract

Viral load measurements may predict whether human papillomavirus (HPV) type 16 infections may become persistent and eventually lead to cervical lesions. Today, multiple PCR methods exist to estimate viral load. We tested three protocols to investigate viral load as a predictor of HPV clearance. We measured viral load in 418 HPV16-positive cervical smears from 224 women participating in the Ludwig–McGill Cohort Study by low-stringency PCR (LS-PCR) using consensus L1 primers targeting over 40 known HPV types, and quantitative real-time PCR (qRT-PCR) targeting the HPV16 E6 and L1 genes. HPV16 clearance was determined by MY09/11 and PGMY PCR testing on repeated smears collected over 5 years. Correlation between viral load measurements by qRT-PCR (E6 versus L1) was excellent (Spearman’s rank correlation, ρ = 0.88), but decreased for L1 qRT-PCR versus LS-PCR (ρ = 0.61). Viral load by LS-PCR was higher for HPV16 and related types independently of other concurrent HPV infections. Median duration of infection was longer for smears with high copy number by all three PCR protocols (log rank <0.05). Viral load is inversely related to HPV16 clearance independently of concurrent HPV infections and PCR protocol.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051722-0
2013-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1850.html?itemId=/content/journal/jgv/10.1099/vir.0.051722-0&mimeType=html&fmt=ahah

References

  1. Bauer H. M., Ting Y., Greer C. E., Chambers J. C., Tashiro C. J., Chimera J., Reingold A., Manos M. M.. ( 1991; ). Genital human papillomavirus infection in female university students as determined by a PCR-based method. . JAMA 265:, 472–477. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bavin P. J., Giles J. A., Deery A., Crow J., Griffiths P. D., Emery V. C., Walker P. G.. ( 1993; ). Use of semi-quantitative PCR for human papillomavirus DNA type 16 to identify women with high grade cervical disease in a population presenting with a mildly dyskaryotic smear report. . Br J Cancer 67:, 602–605. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernard H. U., Chan S. Y., Manos M. M., Ong C. K., Villa L. L., Delius H., Peyton C. L., Bauer H. M., Wheeler C. M.. ( 1994; ). Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. . J Infect Dis 170:, 1077–1085. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bryan J. T., Taddeo F., Skulsky D., Jansen K. U., Frain B. M., Qadadri B., Brown D. R.. ( 2006; ). Detection of specific human papillomavirus types in paraffin-embedded sections of cervical carcinomas. . J Med Virol 78:, 117–124. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bulkmans N. W., Berkhof J., Bulk S., Bleeker M. C., van Kemenade F. J., Rozendaal L., Snijders P. J., Meijer C. J..POBASCAM Study Group ( 2007; ). High-risk HPV type-specific clearance rates in cervical screening. . Br J Cancer 96:, 1419–1424.[PubMed]
    [Google Scholar]
  6. Caballero O. L., Villa L. L., Simpson A. J. G.. ( 1995; ). Low stringency-PCR (LS-PCR) allows entirely internally standardized DNA quantitation. . Nucleic Acids Res 23:, 192–193. [CrossRef] [PubMed]
    [Google Scholar]
  7. Farthing A., Masterson P., Mason W. P., Vousden K. H.. ( 1994; ). Human papillomavirus detection by hybrid capture and its possible clinical use. . J Clin Pathol 47:, 649–652. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fontaine J., Gravitt P., Duh L. M., Lefevre J., Pourreaux K., Hankins C., Coutlée F.. ( 2005; ). High level of correlation of human papillomavirus-16 DNA viral load estimates generated by three real-time PCR assays applied on genital specimens. . Cancer Epidemiol Biomarkers Prev 14:, 2200–2207. [CrossRef] [PubMed]
    [Google Scholar]
  9. Franco E., Villa L., Rohan T., Ferenczy A., Petzl-Erler M., Matlashewski G..Ludwig-McGill Study Group ( 1999; ). Design and methods of the Ludwig-McGill longitudinal study of the natural history of human papillomavirus infection and cervical neoplasia in Brazil. . Rev Panam Salud Publica 6:, 223–233. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gravitt P. E., Peyton C. L., Alessi T. Q., Wheeler C. M., Coutlée F., Hildesheim A., Schiffman M. H., Scott D. R., Apple R. J.. ( 2000; ). Improved amplification of genital human papillomaviruses. . J Clin Microbiol 38:, 357–361.[PubMed]
    [Google Scholar]
  11. Gravitt P. E., Burk R. D., Lorincz A., Herrero R., Hildesheim A., Sherman M. E., Bratti M. C., Rodriguez A. C., Helzlsouer K. J., Schiffman M.. ( 2003; ). A comparison between real-time polymerase chain reaction and hybrid capture 2 for human papillomavirus DNA quantitation. . Cancer Epidemiol Biomarkers Prev 12:, 477–484.[PubMed]
    [Google Scholar]
  12. Gravitt P. E., Kovacic M. B., Herrero R., Schiffman M., Bratti C., Hildesheim A., Morales J., Alfaro M., Sherman M. E.. & other authors ( 2007; ). High load for most high risk human papillomavirus genotypes is associated with prevalent cervical cancer precursors but only HPV16 load predicts the development of incident disease. . Int J Cancer 121:, 2787–2793. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hildesheim A., Schiffman M. H., Gravitt P. E., Glass A. G., Greer C. E., Zhang T., Scott D. R., Rush B. B., Lawler P.. & other authors ( 1994; ). Persistence of type-specific human papillomavirus infection among cytologically normal women. . J Infect Dis 169:, 235–240. [CrossRef] [PubMed]
    [Google Scholar]
  14. Iftner T., Villa L. L.. ( 2003; ). Chapter 12: Human papillomavirus technologies. . J Natl Cancer Inst Monogr 31:, 80–88. [CrossRef] [PubMed]
    [Google Scholar]
  15. Iftner T., Germ L., Swoyer R., Kjaer S. K., Breugelmans J. G., Munk C., Stubenrauch F., Antonello J., Bryan J. T., Taddeo F. J.. ( 2009; ). Study comparing human papillomavirus (HPV) real-time multiplex PCR and Hybrid Capture II INNO-LiPA v2 HPV genotyping PCR assays. . J Clin Microbiol 47:, 2106–2113. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jacobs M. V., Walboomers J. M., van Beek J., Voorhorst F. J., Verheijen R. H., Meijer C. J., van den Brule A. J., Helmerhorst T. J., Snijders P. J.. ( 1999; ). A quantitative polymerase chain reaction-enzyme immunoassay for accurate measurements of human papillomavirus type 16 DNA levels in cervical scrapings. . Br J Cancer 81:, 114–121. [CrossRef] [PubMed]
    [Google Scholar]
  17. Klein R. S., Ho G. Y., Vermund S. H., Fleming I., Burk R. D.. ( 1994; ). Risk factors for squamous intraepithelial lesions on Pap smear in women at risk for human immunodeficiency virus infection. . J Infect Dis 170:, 1404–1409. [CrossRef] [PubMed]
    [Google Scholar]
  18. Manos M. M., Ting Y., Wrigth D. K., Lewis A. J., Broker T. R., Wolinsky S. M.. ( 1989; ). The use of polymerase chain reaction amplification for the detection of genital human papillomaviroses. . In Molecular Diagnostic of Human Cancer, Cancer Cells, pp. 209–214. Edited by Furth M., Greaves M... New York, NY:: Cold Spring Harbor Press;.
    [Google Scholar]
  19. Mincheva A., Gissmann L., zur Hausen H.. ( 1987; ). Chromosomal integration sites of human papillomavirus DNA in three cervical cancer cell lines mapped by in situ hybridization. . Med Microbiol Immunol (Berl) 176:, 245–256. [CrossRef] [PubMed]
    [Google Scholar]
  20. Morris B. J.. ( 2005; ). Cervical human papillomavirus screening by PCR: advantages of targeting the E6/E7 region. . Clin Chem Lab Med 43:, 1171–1177. [CrossRef] [PubMed]
    [Google Scholar]
  21. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A.. ( 1988; ). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. . Science 239:, 487–491. [CrossRef] [PubMed]
    [Google Scholar]
  22. Schlecht, N., Trevisan, A., Rohan, T., Ferenczy, A., Villa, L. L. & Franco, E. L. (2001a). Viral load as a predictor of lesion grade severity in cervical intraepithelial neoplasia. In Program and Oral Presentations for 19th International Papillomavirus Conference, Florianópolis, Santa Catarina, Brazil, p. 138, O-93.
  23. Schlecht N. F., Kulaga S., Robitaille J., Ferreira S., Santos M., Miyamura R. A., Duarte-Franco E., Rohan T. E., Ferenczy A.. & other authors ( 2001b; ). Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. . JAMA 286:, 3106–3114. [CrossRef] [PubMed]
    [Google Scholar]
  24. Schlecht N. F., Trevisan A., Duarte-Franco E., Rohan T. E., Ferenczy A., Villa L. L., Franco E. L.. ( 2003; ). Viral load as a predictor of the risk of cervical intraepithelial neoplasia. . Int J Cancer 103:, 519–524. [CrossRef] [PubMed]
    [Google Scholar]
  25. Trottier H., Mahmud S., Prado J. C., Sobrinho J. S., Costa M. C., Rohan T. E., Villa L. L., Franco E. L.. ( 2008; ). Type-specific duration of human papillomavirus infection: implications for human papillomavirus screening and vaccination. . J Infect Dis 197:, 1436–1447. [CrossRef] [PubMed]
    [Google Scholar]
  26. van den Brule A. J. C., Snijders P. J. F., Gordijn R. L., Bleker O. P., Meijer C. J. L. M., Walboomers J. M. M.. ( 1990; ). General primer-mediated polymerase chain reaction permits the detection of sequenced and still unsequenced human papillomavirus genotypes in cervical scrapes and carcinomas. . Int J Cancer 45:, 644–649. [CrossRef] [PubMed]
    [Google Scholar]
  27. Wentzensen N., Schiffman M., Dunn T., Zuna R. E., Gold M. A., Allen R. A., Zhang R., Sherman M. E., Wacholder S.. & other authors ( 2009; ). Multiple human papillomavirus genotype infections in cervical cancer progression in the study to understand cervical cancer early endpoints and determinants. . Int J Cancer 125:, 2151–2158. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wentzensen N., Gravitt P. E., Long R., Schiffman M., Dunn S. T., Carreon J. D., Allen R. A., Gunja M., Zuna R. E.. & other authors ( 2012; ). Human papillomavirus load measured by Linear Array correlates with quantitative PCR in cervical cytology specimens. . J Clin Microbiol 50:, 1564–1570. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wright D. K., Manos M. M.. ( 1990; ). Sample preparation from paraffin-embedded tissues. . In PCR Protocols: a Guide to Methods and Applications, pp. 153–158. Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J... San Diego:: Academic Press;.
    [Google Scholar]
  30. Yee C., Krishnan-Hewlett I., Baker C. C., Schlegel R., Howley P. M.. ( 1985; ). Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. . Am J Pathol 119:, 361–366.[PubMed]
    [Google Scholar]
  31. Ylitalo N., Sørensen P., Josefsson A. M., Magnusson P. K., Andersen P. K., Pontén J., Adami H. O., Gyllensten U. B., Melbye M.. ( 2000; ). Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: a nested case-control study. . Lancet 355:, 2194–2198. [CrossRef] [PubMed]
    [Google Scholar]
  32. zur Hausen H.. ( 2002; ). Papillomaviruses and cancer: from basic studies to clinical application. . Nat Rev Cancer 2:, 342–350. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051722-0
Loading
/content/journal/jgv/10.1099/vir.0.051722-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error