Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signalling Free

Abstract

Transmissible gastroenteritis virus (TGEV) infection induced apoptosis in several cell lines . Our previous studies demonstrated that TGEV could activate FasL- and mitochondria-mediated pathways to induce apoptosis in PK-15 cells. In this study, we investigated the regulation of p53 and p38 mitogen-activated protein kinases (MAPK) signalling pathways in the interaction of TGEV with host cells. We observed that TGEV infection decreased p300/CBP, downregulated MDM2 and promoted p53 phosphorylation at serines 15, 20 and 46, resulting in accumulation and activation of p53 in PK-15 cells. TGEV infection induced the transient activation of p38 MAPK in the early phase of inoculation and constant activation in the later phase of infection. However, UV-irradiated TGEV did not promote the activation of p53 and p38 MAPK in the later phase, whereas it only triggered the transient activation of p38 MAPK in the early phase. Blocking of p53 activation significantly inhibited the occurrence of apoptosis through suppressing the TGEV-induced FasL expression, Bcl-2 reduction, Bax and cytochrome redistribution, while inhibition of p38 activity moderately blocked apoptosis induction and partly attenuated the accumulation and activation of p53. However, inhibition of p38 and p53 activity had no significant effects on viral gene transcription at 12 and 24 h post-infection. Taken together, these results demonstrated that TGEV infection promoted the activation of p38 MAPK and p53 signalling, and p53 signalling might play a dominant role in the regulation of cell apoptosis. These findings provide new insights into the function of p53 and p38 MAPK in the interaction of TGEV with host cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051557-0
2013-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1807.html?itemId=/content/journal/jgv/10.1099/vir.0.051557-0&mimeType=html&fmt=ahah

References

  1. Austin D., Baer A., Lundberg L., Shafagati N., Schoonmaker A., Narayanan A., Popova T., Panthier J. J., Kashanchi F. other authors 2012; p53 Activation following Rift Valley fever virus infection contributes to cell death and viral production. PLoS ONE 7:e36327 [View Article][PubMed]
    [Google Scholar]
  2. Bálint É., Vousden K. H. 2001; Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85:1813–1823 [View Article][PubMed]
    [Google Scholar]
  3. Banerjee S., Narayanan K., Mizutani T., Makino S. 2002; Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. J Virol 76:5937–5948 [View Article][PubMed]
    [Google Scholar]
  4. Barber G. N. 2001; Host defense, viruses and apoptosis. Cell Death Differ 8:113–126 [View Article][PubMed]
    [Google Scholar]
  5. Carstens E. B. 2010; Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol 155:133–146 [View Article][PubMed]
    [Google Scholar]
  6. Chen J., Li Q. 2011; Life and death of transcriptional co-activator p300. Epigenetics 6:957–961 [View Article][PubMed]
    [Google Scholar]
  7. Chen C. J., Sugiyama K., Kubo H., Huang C., Makino S. 2004; Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. J Virol 78:10410–10419 [View Article][PubMed]
    [Google Scholar]
  8. Cruz J. L., Sola I., Becares M., Alberca B., Plana J., Enjuanes L., Zuñiga S. 2011; Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathog 7:e1002090 [View Article][PubMed]
    [Google Scholar]
  9. Desloges N., Schubert C., Wolff M. H., Rahaus M. 2008; Varicella-zoster virus infection induces the secretion of interleukin-8. Med Microbiol Immunol (Berl) 197:277–284 [View Article][PubMed]
    [Google Scholar]
  10. Ding L., Xu X., Huang Y., Li Z., Zhang K., Chen G., Yu G., Wang Z., Li W., Tong D. 2012; Transmissible gastroenteritis virus infection induces apoptosis through FasL- and mitochondria-mediated pathways. Vet Microbiol 158:12–22 [View Article][PubMed]
    [Google Scholar]
  11. Eléouët J. F., Chilmonczyk S., Besnardeau L., Laude H. 1998; Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J Virol 72:4918–4924[PubMed]
    [Google Scholar]
  12. Eléouët J. F., Slee E. A., Saurini F., Castagné N., Poncet D., Garrido C., Solary E., Martin S. J. 2000; The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEV-induced apoptosis. J Virol 74:3975–3983 [View Article][PubMed]
    [Google Scholar]
  13. Enjuanes L., Van der Zeijst B. A. M. 1995; Molecular basis of transmissible gastroenteritis virus epidemiology. In The Coronaviridae pp. 337–376 Edited by Siddell S. G. New York, NY: Plenum Press; [CrossRef]
    [Google Scholar]
  14. Everett H., McFadden G. 1999; Apoptosis: an innate immune response to virus infection. Trends Microbiol 7:160–165 [View Article][PubMed]
    [Google Scholar]
  15. Gostissa M., Hofmann T. G., Will H., Del Sal G. 2003; Regulation of p53 functions: let’s meet at the nuclear bodies. Curr Opin Cell Biol 15:351–357 [View Article][PubMed]
    [Google Scholar]
  16. Grossman S. R., Perez M., Kung A. L., Joseph M., Mansur C., Xiao Z. X., Kumar S., Howley P. M., Livingston D. M. 1998; p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 2:405–415 [View Article][PubMed]
    [Google Scholar]
  17. Kuribayashi K., Finnberg N., Jeffers J. R., Zambetti G. P., El-Deiry W. S. 2011; The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo. Cell Cycle 102380–2389 [CrossRef]
    [Google Scholar]
  18. Li L., Liao J., Ruland J., Mak T. W., Cohen S. N. 2001; A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control. Proc Natl Acad Sci U S A 98:1619–1624 [View Article][PubMed]
    [Google Scholar]
  19. Li Z., Xu X., Huang Y., Ding L., Wang Z., Yu G., Xu D., Li W., Tong D. 2012; Swainsonine activates mitochondria-mediated apoptotic pathway in human lung cancer A549 cells and retards the growth of lung cancer xenografts. Int J Biol Sci 8:394–405 [View Article][PubMed]
    [Google Scholar]
  20. Lin P. Y., Lee J. W., Liao M. H., Hsu H. Y., Chiu S. J., Liu H. J., Shih W. L. 2009; Modulation of p53 by mitogen-activated protein kinase pathways and protein kinase C delta during avian reovirus S1133-induced apoptosis. Virology 385:323–334 [View Article][PubMed]
    [Google Scholar]
  21. Lorusso A., Decaro N., Schellen P., Rottier P. J., Buonavoglia C., Haijema B. J., de Groot R. J. 2008; Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 82:10312–10317 [View Article][PubMed]
    [Google Scholar]
  22. Mayo L. D., Donner D. B. 2002; The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467 [View Article][PubMed]
    [Google Scholar]
  23. Miyashita T., Reed J. C. 1995; Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299 [View Article][PubMed]
    [Google Scholar]
  24. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. 2004; Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochem Biophys Res Commun 319:1228–1234 [View Article][PubMed]
    [Google Scholar]
  25. Muñoz-Fontela C., Macip S., Martínez-Sobrido L., Brown L., Ashour J., García-Sastre A., Lee S. W., Aaronson S. A. 2008; Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med 205:1929–1938 [View Article][PubMed]
    [Google Scholar]
  26. Padhan K., Minakshi R., Towheed M. A., Jameel S. 2008; Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J Gen Virol 89:1960–1969 [View Article][PubMed]
    [Google Scholar]
  27. Pampin M., Simonin Y., Blondel B., Percherancier Y., Chelbi-Alix M. K. 2006; Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol 80:8582–8592 [View Article][PubMed]
    [Google Scholar]
  28. Perfettini J. L., Castedo M., Nardacci R., Ciccosanti F., Boya P., Roumier T., Larochette N., Piacentini M., Kroemer G. 2005; Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 201:279–289 [View Article][PubMed]
    [Google Scholar]
  29. Prives C., Hall P. A. 1999; The p53 pathway. J Pathol 187:112–126 [View Article][PubMed]
    [Google Scholar]
  30. Rahaus M., Desloges N., Wolff M. H. 2004; Replication of varicella-zoster virus is influenced by the levels of JNK/SAPK and p38/MAPK activation. J Gen Virol 85:3529–3540 [View Article][PubMed]
    [Google Scholar]
  31. Reed L. J., Muench H. 1938; A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497 [View Article][PubMed]
    [Google Scholar]
  32. Regan A. D., Cohen R. D., Whittaker G. R. 2009; Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells. Virology 384:135–143 [View Article][PubMed]
    [Google Scholar]
  33. Shi D., Pop M. S., Kulikov R., Love I. M., Kung A. L., Grossman S. R. 2009; CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proc Natl Acad Sci U S A 106:16275–16280 [View Article][PubMed]
    [Google Scholar]
  34. Sirinarumitr T., Kluge J. P., Paul P. S. 1998; Transmissible gastroenteritis virus induced apoptosis in swine testes cell cultures. Arch Virol 143:2471–2485 [View Article][PubMed]
    [Google Scholar]
  35. Smeenk L., van Heeringen S. J., Koeppel M., Gilbert B., Janssen-Megens E., Stunnenberg H. G., Lohrum M. 2011; Role of p53 serine 46 in p53 target gene regulation. PLoS ONE 6:e17574 [View Article][PubMed]
    [Google Scholar]
  36. Stempin C. C., Garrido V. V., Dulgerian L. R., Cerbán F. M. 2008; Cruzipain and SP600125 induce p38 activation, alter NO/arginase balance and favor the survival of Trypanosoma cruzi in macrophages. Acta Trop 106:119–127 [View Article][PubMed]
    [Google Scholar]
  37. Takaoka A., Hayakawa S., Yanai H., Stoiber D., Negishi H., Kikuchi H., Sasaki S., Imai K., Shibue T. other authors 2003; Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–523 [View Article][PubMed]
    [Google Scholar]
  38. Wu G. S. 2004; The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161[PubMed] [CrossRef]
    [Google Scholar]
  39. Zarubin T., Han J. 2005; Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18 [View Article][PubMed]
    [Google Scholar]
  40. Zhong Y., Tan Y. W., Liu D. X. 2012; Recent progress in studies of arterivirus– and coronavirus–host interactions. Viruses 4:980–1010 [View Article][PubMed]
    [Google Scholar]
  41. Zhou Q., Zhu M., Zhang H., Yi T., Klena J. D., Peng Y. 2012; Disruption of the p53-p21 pathway inhibits efficiency of the lytic-replication cycle of herpes simplex virus type 2 (HSV-2). Virus Res 169:91–97 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051557-0
Loading
/content/journal/jgv/10.1099/vir.0.051557-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed