1887

Abstract

Rotavirus is a leading cause of severe dehydrating diarrhoea in infants and young children. Following rotavirus infection in the intestine an innate immune response is rapidly triggered. This response leads to the induction of type I and type III interferons (IFNs) and other cytokines, resulting in a reduction in viral replication. Here we review the current literature describing the detection of rotavirus infection by pattern recognition receptors within host cells, the subsequent molecular mechanisms leading to IFN and cytokine production, and the processes leading to reduced rotavirus replication and the development of protective immunity. Rotavirus countermeasures against innate responses, and their roles in modulating rotavirus replication in mice, also are discussed. By linking these different aspects of innate immunity, we provide a comprehensive overview of the host’s first line of defence against rotavirus infection. Understanding these processes is expected to be of benefit in improving strategies to combat rotavirus disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051276-0
2013-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1151.html?itemId=/content/journal/jgv/10.1099/vir.0.051276-0&mimeType=html&fmt=ahah

References

  1. Angel J. , Franco M. A. , Greenberg H. B. , Bass D. . ( 1999; ). Lack of a role for type I and type II interferons in the resolution of rotavirus-induced diarrhea and infection in mice. . J Interferon Cytokine Res 19:, 655–659. [CrossRef] [PubMed]
    [Google Scholar]
  2. Angel J. , Franco M. A. , Greenberg H. B. . ( 2012; ). Rotavirus immune responses and correlates of protection. . Curr Opin Virol 2:, 419–425. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arnold M. M. , Patton J. T. . ( 2009; ). Rotavirus antagonism of the innate immune response. . Viruses 1:, 1035–1056. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arnold M. M. , Patton J. T. . ( 2011; ). Diversity of interferon antagonist activities mediated by NSP1 proteins of different rotavirus strains. . J Virol 85:, 1970–1979. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bagchi P. , Dutta D. , Chattopadhyay S. , Mukherjee A. , Halder U. C. , Sarkar S. , Kobayashi N. , Komoto S. , Taniguchi K. , Chawla-Sarkar M. . ( 2010; ). Rotavirus nonstructural protein 1 suppresses virus-induced cellular apoptosis to facilitate viral growth by activating the cell survival pathways during early stages of infection. . J Virol 84:, 6834–6845. [CrossRef] [PubMed]
    [Google Scholar]
  6. Barro M. , Patton J. T. . ( 2005; ). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. . Proc Natl Acad Sci U S A 102:, 4114–4119. [CrossRef] [PubMed]
    [Google Scholar]
  7. Barro M. , Patton J. T. . ( 2007; ). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. . J Virol 81:, 4473–4481. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bartee E. , Mohamed M. R. , Lopez M. C. , Baker H. V. , McFadden G. . ( 2009; ). The addition of tumor necrosis factor plus β interferon induces a novel synergistic antiviral state against poxviruses in primary human fibroblasts. . J Virol 83:, 498–511. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bass D. M. . ( 1997; ). Interferon gamma and interleukin 1, but not interferon alfa, inhibit rotavirus entry into human intestinal cell lines. . Gastroenterology 113:, 81–89. [CrossRef] [PubMed]
    [Google Scholar]
  10. Belkowski L. S. , Sen G. C. . ( 1987; ). Inhibition of vesicular stomatitis viral mRNA synthesis by interferons. . J Virol 61:, 653–660.[PubMed]
    [Google Scholar]
  11. Broquet A. H. , Hirata Y. , McAllister C. S. , Kagnoff M. F. . ( 2011; ). RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. . J Immunol 186:, 1618–1626. [CrossRef] [PubMed]
    [Google Scholar]
  12. Brown K. A. , Offit P. A. . ( 1998; ). Rotavirus-specific proteins are detected in murine macrophages in both intestinal and extraintestinal lymphoid tissues. . Microb Pathog 24:, 327–331. [CrossRef] [PubMed]
    [Google Scholar]
  13. Brown K. A. , Kriss J. A. , Moser C. A. , Wenner W. J. , Offit P. A. . ( 2000; ). Circulating rotavirus-specific antibody-secreting cells (ASCs) predict the presence of rotavirus-specific ASCs in the human small intestinal lamina propria. . J Infect Dis 182:, 1039–1043. [CrossRef] [PubMed]
    [Google Scholar]
  14. Casola A. , Estes M. K. , Crawford S. E. , Ogra P. L. , Ernst P. B. , Garofalo R. P. , Crowe S. E. . ( 1998; ). Rotavirus infection of cultured intestinal epithelial cells induces secretion of CXC and CC chemokines. . Gastroenterology 114:, 947–955. [CrossRef] [PubMed]
    [Google Scholar]
  15. Casola A. , Garofalo R. P. , Crawford S. E. , Estes M. K. , Mercurio F. , Crowe S. E. , Brasier A. R. . ( 2002; ). Interleukin-8 gene regulation in intestinal epithelial cells infected with rotavirus: role of viral-induced IκB kinase activation. . Virology 298:, 8–19. [CrossRef] [PubMed]
    [Google Scholar]
  16. Cervantes-Barragan L. , Lewis K. L. , Firner S. , Thiel V. , Hugues S. , Reith W. , Ludewig B. , Reizis B. . ( 2012; ). Plasmacytoid dendritic cells control T-cell response to chronic viral infection. . Proc Natl Acad Sci U S A 109:, 3012–3017. [CrossRef] [PubMed]
    [Google Scholar]
  17. Coulson B. S. , Grimwood K. , Hudson I. L. , Barnes G. L. , Bishop R. F. . ( 1992; ). Role of coproantibody in clinical protection of children during reinfection with rotavirus. . J Clin Microbiol 30:, 1678–1684.[PubMed]
    [Google Scholar]
  18. De Boissieu D. , Lebon P. , Badoual J. , Bompard Y. , Dupont C. . ( 1993; ). Rotavirus induces α-interferon release in children with gastroenteritis. . J Pediatr Gastroenterol Nutr 16:, 29–32. [CrossRef] [PubMed]
    [Google Scholar]
  19. de Veer M. J. , Holko M. , Frevel M. , Walker E. , Der S. , Paranjape J. M. , Silverman R. H. , Williams B. R. . ( 2001; ). Functional classification of interferon-stimulated genes identified using microarrays. . J Leukoc Biol 69:, 912–920.[PubMed]
    [Google Scholar]
  20. Deal E. M. , Jaimes M. C. , Crawford S. E. , Estes M. K. , Greenberg H. B. . ( 2010; ). Rotavirus structural proteins and dsRNA are required for the human primary plasmacytoid dendritic cell IFNα response. . PLoS Pathog 6:, e1000931. [CrossRef] [PubMed]
    [Google Scholar]
  21. Derbyshire J. B. . ( 1989; ). The interferon sensitivity of selected porcine viruses. . Can J Vet Res 53:, 52–55.[PubMed]
    [Google Scholar]
  22. Desselberger U. , Huppertz H. I. . ( 2011; ). Immune responses to rotavirus infection and vaccination and associated correlates of protection. . J Infect Dis 203:, 188–195. [CrossRef] [PubMed]
    [Google Scholar]
  23. Donnelly R. P. , Kotenko S. V. . ( 2010; ). Interferon-λ: a new addition to an old family. . J Interferon Cytokine Res 30:, 555–564. [CrossRef] [PubMed]
    [Google Scholar]
  24. Douagi I. , McInerney G. M. , Hidmark A. S. , Miriallis V. , Johansen K. , Svensson L. , Karlsson Hedestam G. B. . ( 2007; ). Role of interferon regulatory factor 3 in type I interferon responses in rotavirus-infected dendritic cells and fibroblasts. . J Virol 81:, 2758–2768. [CrossRef] [PubMed]
    [Google Scholar]
  25. Durbin J. E. , Johnson T. R. , Durbin R. K. , Mertz S. E. , Morotti R. A. , Peebles R. S. , Graham B. S. . ( 2002; ). The role of IFN in respiratory syncytial virus pathogenesis. . J Immunol 168:, 2944–2952.[PubMed] [CrossRef]
    [Google Scholar]
  26. Feng N. , Kim B. , Fenaux M. , Nguyen H. , Vo P. , Omary M. B. , Greenberg H. B. . ( 2008; ). Role of interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal organs of suckling mice. . J Virol 82:, 7578–7590. [CrossRef] [PubMed]
    [Google Scholar]
  27. Feng N. , Sen A. , Nguyen H. , Vo P. , Hoshino Y. , Deal E. M. , Greenberg H. B. . ( 2009; ). Variation in antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse embryonic fibroblasts. . J Virol 83:, 6987–6994. [CrossRef] [PubMed]
    [Google Scholar]
  28. Fitzgerald-Bocarsly P. , Feng D. . ( 2007; ). The role of type I interferon production by dendritic cells in host defense. . Biochimie 89:, 843–855. [CrossRef] [PubMed]
    [Google Scholar]
  29. Franco M. A. , Tin C. , Rott L. S. , VanCott J. L. , McGhee J. R. , Greenberg H. B. . ( 1997; ). Evidence for CD8+ T-cell immunity to murine rotavirus in the absence of perforin, fas, and gamma interferon. . J Virol 71:, 479–486.[PubMed]
    [Google Scholar]
  30. Franco M. A. , Angel J. , Greenberg H. B. . ( 2006; ). Immunity and correlates of protection for rotavirus vaccines. . Vaccine 24:, 2718–2731. [CrossRef] [PubMed]
    [Google Scholar]
  31. Frias A. H. , Vijay-Kumar M. , Gentsch J. R. , Crawford S. E. , Carvalho F. A. , Estes M. K. , Gewirtz A. T. . ( 2010; ). Intestinal epithelia activate anti-viral signaling via intracellular sensing of rotavirus structural components. . Mucosal Immunol 3:, 622–632. [CrossRef] [PubMed]
    [Google Scholar]
  32. Gilliet M. , Cao W. , Liu Y. J. . ( 2008; ). Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. . Nat Rev Immunol 8:, 594–606. [CrossRef] [PubMed]
    [Google Scholar]
  33. Graff J. W. , Mitzel D. N. , Weisend C. M. , Flenniken M. L. , Hardy M. E. . ( 2002; ). Interferon regulatory factor 3 is a cellular partner of rotavirus NSP1. . J Virol 76:, 9545–9550. [CrossRef] [PubMed]
    [Google Scholar]
  34. Graff J. W. , Ettayebi K. , Hardy M. E. . ( 2009; ). Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. . PLoS Pathog 5:, e1000280. [CrossRef] [PubMed]
    [Google Scholar]
  35. Graham K. L. , O’Donnell J. A. , Tan Y. , Sanders N. , Carrington E. M. , Allison J. , Coulson B. S. . ( 2007; ). Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. . J Virol 81:, 6446–6458. [CrossRef] [PubMed]
    [Google Scholar]
  36. Hirata Y. , Broquet A. H. , Menchén L. , Kagnoff M. F. . ( 2007; ). Activation of innate immune defense mechanisms by signaling through RIG-I/IPS-1 in intestinal epithelial cells. . J Immunol 179:, 5425–5432.[PubMed] [CrossRef]
    [Google Scholar]
  37. Hjelt K. , Paerregaard A. , Nielsen O. H., , Krasilnikoff P. A. , Grauballe P. C. . ( 1987; ). Protective effect of preexisting rotavirus-specific immunoglobulin A against naturally acquired rotavirus infection in children. . J Med Virol 21:, 39–47. [CrossRef] [PubMed]
    [Google Scholar]
  38. Holloway G. , Coulson B. S. . ( 2006; ). Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. . J Virol 80:, 10624–10633. [CrossRef] [PubMed]
    [Google Scholar]
  39. Holloway G. , Truong T. T. , Coulson B. S. . ( 2009; ). Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-κB. . J Virol 83:, 4942–4951. [CrossRef] [PubMed]
    [Google Scholar]
  40. Hornung V. , Ellegast J. , Kim S. , Brzózka K. , Jung A. , Kato H. , Poeck H. , Akira S. , Conzelmann K. K. . & other authors ( 2006; ). 5′-Triphosphate RNA is the ligand for RIG-I. . Science 314:, 994–997. [CrossRef] [PubMed]
    [Google Scholar]
  41. Imai M. , Akatani K. , Ikegami N. , Furuichi Y. . ( 1983; ). Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. . J Virol 47:, 125–136.[PubMed]
    [Google Scholar]
  42. Istrate C. , Douagi I. , Charpilienne A. , McInerney G. M. , Hidmark A. , Johansen K. , Larsson M. , Magnusson K. E. , Poncet D. . & other authors ( 2007; ). Bone marrow dendritic cells internalize live RF-81 bovine rotavirus and rotavirus-like particles (RF 2/6-GFP-VLP and RF 8*2/6/7-VLP) but are only activated by live bovine rotavirus. . Scand J Immunol 65:, 494–502. [CrossRef] [PubMed]
    [Google Scholar]
  43. Jensen S. , Thomsen A. R. . ( 2012; ). Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. . J Virol 86:, 2900–2910. [CrossRef] [PubMed]
    [Google Scholar]
  44. Karupiah G. , Buller R. M. , Van Rooijen N. , Duarte C. J. , Chen J. . ( 1996; ). Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. . J Virol 70:, 8301–8309.[PubMed]
    [Google Scholar]
  45. Kasturi S. P. , Skountzou I. , Albrecht R. A. , Koutsonanos D. , Hua T. , Nakaya H. I. , Ravindran R. , Stewart S. , Alam M. . & other authors ( 2011; ). Programming the magnitude and persistence of antibody responses with innate immunity. . Nature 470:, 543–547. [CrossRef] [PubMed]
    [Google Scholar]
  46. Kato H. , Takeuchi O. , Mikamo-Satoh E. , Hirai R. , Kawai T. , Matsushita K. , Hiiragi A. , Dermody T. S. , Fujita T. , Akira S. . ( 2008; ). Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. . J Exp Med 205:, 1601–1610. [CrossRef] [PubMed]
    [Google Scholar]
  47. Kim I. , Shu C. W. , Xu W. , Shiau C. W. , Grant D. , Vasile S. , Cosford N. D. , Reed J. C. . ( 2009; ). Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. . J Biol Chem 284:, 1593–1603. [CrossRef] [PubMed]
    [Google Scholar]
  48. Kotenko S. V. , Gallagher G. , Baurin V. V. , Lewis-Antes A. , Shen M. , Shah N. K. , Langer J. A. , Sheikh F. , Dickensheets H. , Donnelly R. P. . ( 2003; ). IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. . Nat Immunol 4:, 69–77. [CrossRef] [PubMed]
    [Google Scholar]
  49. Kumagai Y. , Takeuchi O. , Kato H. , Kumar H. , Matsui K. , Morii E. , Aozasa K. , Kawai T. , Akira S. . ( 2007; ). Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses. . Immunity 27:, 240–252. [CrossRef] [PubMed]
    [Google Scholar]
  50. La Bonnardiere C. , de Vaureix C. , L’Haridon R. , Scherrer R. . ( 1980; ). Weak susceptibility of rotavirus to bovine interferon in calf kidney cells. . Arch Virol 64:, 167–170. [CrossRef] [PubMed]
    [Google Scholar]
  51. La Bonnardière C. , Cohen J. , Contrepois M. . ( 1981; ). Interferon activity in rotavirus infected newborn calves. . Ann Rech Vet 12:, 85–91.[PubMed]
    [Google Scholar]
  52. LaMonica R. , Kocer S. S. , Nazarova J. , Dowling W. , Geimonen E. , Shaw R. D. , Mackow E. R. . ( 2001; ). VP4 differentially regulates TRAF2 signaling, disengaging JNK activation while directing NF-κB to effect rotavirus-specific cellular responses. . J Biol Chem 276:, 19889–19896. [CrossRef] [PubMed]
    [Google Scholar]
  53. Lenardo M. J. , Fan C. M. , Maniatis T. , Baltimore D. . ( 1989; ). The involvement of NF-κB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. . Cell 57:, 287–294. [CrossRef] [PubMed]
    [Google Scholar]
  54. Li W. , Manktelow E. , von Kirchbach J. C. , Gog J. R. , Desselberger U. , Lever A. M. . ( 2010; ). Genomic analysis of codon, sequence and structural conservation with selective biochemical-structure mapping reveals highly conserved and dynamic structures in rotavirus RNAs with potential cis-acting functions. . Nucleic Acids Res 38:, 7718–7735. [CrossRef] [PubMed]
    [Google Scholar]
  55. Liu K. , Yang X. , Wu Y. , Li J. . ( 2009; ). Rotavirus strategies to evade host antiviral innate immunity. . Immunol Lett 127:, 13–18. [CrossRef] [PubMed]
    [Google Scholar]
  56. Lopez-Guerrero D. V. , Meza-Perez S. , Ramirez-Pliego O. , Santana-Calderon M. A. , Espino-Solis P. , Gutierrez-Xicotencatl L. , Flores-Romo L. , Esquivel-Guadarrama F. R. . ( 2010; ). Rotavirus infection activates dendritic cells from Peyer’s patches in adult mice. . J Virol 84:, 1856–1866. [CrossRef] [PubMed]
    [Google Scholar]
  57. Lopman B. A. , Pitzer V. E. , Sarkar R. , Gladstone B. , Patel M. , Glasser J. , Gambhir M. , Atchison C. , Grenfell B. T. . & other authors ( 2012; ). Understanding reduced rotavirus vaccine efficacy in low socio-economic settings. . PLoS ONE 7:, e41720. [CrossRef] [PubMed]
    [Google Scholar]
  58. Marques J. T. , Devosse T. , Wang D. , Zamanian-Daryoush M. , Serbinowski P. , Hartmann R. , Fujita T. , Behlke M. A. , Williams B. R. . ( 2006; ). A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. . Nat Biotechnol 24:, 559–565. [CrossRef] [PubMed]
    [Google Scholar]
  59. McKimm-Breschkin J. L. , Holmes I. H. . ( 1982; ). Conditions required for induction of interferon by rotaviruses and for their sensitivity to its action. . Infect Immun 36:, 857–863.[PubMed]
    [Google Scholar]
  60. Mesa M. C. , Rodríguez L. S. , Franco M. A. , Angel J. . ( 2007; ). Interaction of rotavirus with human peripheral blood mononuclear cells: plasmacytoid dendritic cells play a role in stimulating memory rotavirus specific T cells in vitro. . Virology 366:, 174–184. [CrossRef] [PubMed]
    [Google Scholar]
  61. Mikkelsen S. S. , Jensen S. B. , Chiliveru S. , Melchjorsen J. , Julkunen I. , Gaestel M. , Arthur J. S. , Flavell R. A. , Ghosh S. , Paludan S. R. . ( 2009; ). RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. . J Biol Chem 284:, 10774–10782. [CrossRef] [PubMed]
    [Google Scholar]
  62. Mohanty S. K. , Ivantes C. A. , Mourya R. , Pacheco C. , Bezerra J. A. . ( 2010; ). Macrophages are targeted by rotavirus in experimental biliary atresia and induce neutrophil chemotaxis by Mip2/Cxcl2. . Pediatr Res 67:, 345–351. [CrossRef] [PubMed]
    [Google Scholar]
  63. Narváez C. F. , Angel J. , Franco M. A. . ( 2005; ). Interaction of rotavirus with human myeloid dendritic cells. . J Virol 79:, 14526–14535. [CrossRef] [PubMed]
    [Google Scholar]
  64. Pane J. A. , Webster N. L. , Graham K. L. , Holloway G. , Zufferey C. , Coulson B. S. . ( 2013; ). Rotavirus acceleration of murine type 1 diabetes is associated with a T helper 1-dependent specific serum antibody response and virus effects in regional lymph nodes. . Diabetologia 56:, 573–582. [CrossRef] [PubMed]
    [Google Scholar]
  65. Patel M. M. , López-Collada V. R. , Bulhões M. M. , De Oliveira L. H. , Bautista Márquez A. , Flannery B. , Esparza-Aguilar M. , Montenegro Renoiner E. I. , Luna-Cruz M. E. . & other authors ( 2011; ). Intussusception risk and health benefits of rotavirus vaccination in Mexico and Brazil. . N Engl J Med 364:, 2283–2292. [CrossRef] [PubMed]
    [Google Scholar]
  66. Pichlmair A. , Schulz O. , Tan C. P. , Rehwinkel J. , Kato H. , Takeuchi O. , Akira S. , Way M. , Schiavo G. , Reis e Sousa C. . ( 2009; ). Activation of MDA5 requires higher-order RNA structures generated during virus infection. . J Virol 83:, 10761–10769. [CrossRef] [PubMed]
    [Google Scholar]
  67. Pizarro J. L. , Sandino A. M. , Pizarro J. M. , Fernández J. , Spencer E. . ( 1991; ). Characterization of rotavirus guanylyltransferase activity associated with polypeptide VP3. . J Gen Virol 72:, 325–332. [CrossRef] [PubMed]
    [Google Scholar]
  68. Pott J. , Mahlakõiv T. , Mordstein M. , Duerr C. U. , Michiels T. , Stockinger S. , Staeheli P. , Hornef M. W. . ( 2011; ). IFN-λ determines the intestinal epithelial antiviral host defense. . Proc Natl Acad Sci U S A 108:, 7944–7949. [CrossRef] [PubMed]
    [Google Scholar]
  69. Pott J. , Stockinger S. , Torow N. , Smoczek A. , Lindner C. , McInerney G. , Bäckhed F. , Baumann U. , Pabst O. . & other authors ( 2012; ). Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. . PLoS Pathog 8:, e1002670. [CrossRef] [PubMed]
    [Google Scholar]
  70. Randall R. E. , Goodbourn S. . ( 2008; ). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. . J Gen Virol 89:, 1–47. [CrossRef] [PubMed]
    [Google Scholar]
  71. Richardson V. , Parashar U. , Patel M. . ( 2011; ). Childhood diarrhea deaths after rotavirus vaccination in Mexico. . N Engl J Med 365:, 772–773. [CrossRef] [PubMed]
    [Google Scholar]
  72. Rodríguez L. S. , Barreto A. , Franco M. A. , Angel J. . ( 2009; ). Immunomodulators released during rotavirus infection of polarized Caco-2 cells. . Viral Immunol 22:, 163–172. [CrossRef] [PubMed]
    [Google Scholar]
  73. Rojas M. , Arias C. F. , López S. . ( 2010; ). Protein kinase R is responsible for the phosphorylation of eIF2α in rotavirus infection. . J Virol 84:, 10457–10466. [CrossRef] [PubMed]
    [Google Scholar]
  74. Rollo E. E. , Kumar K. P. , Reich N. C. , Cohen J. , Angel J. , Greenberg H. B. , Sheth R. , Anderson J. , Oh B. . & other authors ( 1999; ). The epithelial cell response to rotavirus infection. . J Immunol 163:, 4442–4452.[PubMed]
    [Google Scholar]
  75. Rosé J. R. , Williams M. B. , Rott L. S. , Butcher E. C. , Greenberg H. B. . ( 1998; ). Expression of the mucosal homing receptor α4β7 correlates with the ability of CD8+ memory T cells to clear rotavirus infection. . J Virol 72:, 726–730.[PubMed]
    [Google Scholar]
  76. Saxena V. , Shivakumar P. , Sabla G. , Mourya R. , Chougnet C. , Bezerra J. A. . ( 2011; ). Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia. . Sci Transl Med 3:, 102ra194. [CrossRef]
    [Google Scholar]
  77. Schwers A. , Vanden Broecke C. , Maenhoudt M. , Béduin J. M. , Wérenne J. , Pastoret P. P. . ( 1985; ). Experimental rotavirus diarrhoea in colostrum-deprived newborn calves: assay of treatment by administration of bacterially produced human interferon (Hu-IFN alpha 2). . Ann Rech Vet 16:, 213–218.[PubMed]
    [Google Scholar]
  78. Sen A. , Feng N. , Ettayebi K. , Hardy M. E. , Greenberg H. B. . ( 2009; ). IRF3 inhibition by rotavirus NSP1 is host cell and virus strain dependent but independent of NSP1 proteasomal degradation. . J Virol 83:, 10322–10335. [CrossRef] [PubMed]
    [Google Scholar]
  79. Sen A. , Pruijssers A. J. , Dermody T. S. , García-Sastre A. , Greenberg H. B. . ( 2011; ). The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. . J Virol 85:, 3717–3732. [CrossRef] [PubMed]
    [Google Scholar]
  80. Sen A. , Rothenberg M. E. , Mukherjee G. , Feng N. , Kalisky T. , Nair N. , Johnstone I. M. , Clarke M. F. , Greenberg H. B. . ( 2012; ). Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution. . Proc Natl Acad Sci U S A 109:, 20667–20672. [CrossRef] [PubMed]
    [Google Scholar]
  81. Seo Y. J. , Hahm B. . ( 2010; ). Type I interferon modulates the battle of host immune system against viruses. . Adv Appl Microbiol 73:, 83–101. [CrossRef] [PubMed]
    [Google Scholar]
  82. Seth R. B. , Sun L. , Ea C. K. , Chen Z. J. . ( 2005; ). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. . Cell 122:, 669–682. [CrossRef] [PubMed]
    [Google Scholar]
  83. Sherry B. . ( 2009; ). Rotavirus and reovirus modulation of the interferon response. . J Interferon Cytokine Res 29:, 559–567. [CrossRef] [PubMed]
    [Google Scholar]
  84. Sheth R. , Anderson J. , Sato T. , Oh B. , Hempson S. J. , Rollo E. , Mackow E. R. , Shaw R. D. . ( 1996; ). Rotavirus stimulates IL-8 secretion from cultured epithelial cells. . Virology 221:, 251–259. [CrossRef] [PubMed]
    [Google Scholar]
  85. Siegel R. , Eskdale J. , Gallagher G. . ( 2011; ). Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. . J Immunol 187:, 5636–5644. [CrossRef] [PubMed]
    [Google Scholar]
  86. Silvestri L. S. , Taraporewala Z. F. , Patton J. T. . ( 2004; ). Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms. . J Virol 78:, 7763–7774. [CrossRef] [PubMed]
    [Google Scholar]
  87. Snodgrass D. R. , Angus K. W. , Gray E. W. . ( 1977; ). Rotavirus infection in lambs: pathogenesis and pathology. . Arch Virol 55:, 263–274. [CrossRef] [PubMed]
    [Google Scholar]
  88. Soloff A. C. , Barratt-Boyes S. M. . ( 2010; ). Enemy at the gates: dendritic cells and immunity to mucosal pathogens. . Cell Res 20:, 872–885. [CrossRef] [PubMed]
    [Google Scholar]
  89. Spiegel M. , Weber F. . ( 2006; ). Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus. . Virol J 3:, 17. [CrossRef] [PubMed]
    [Google Scholar]
  90. Stadnyk A. W. . ( 2002; ). Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. . Can J Gastroenterol 16:, 241–246.[PubMed]
    [Google Scholar]
  91. Tate J. E. , Burton A. H. , Boschi-Pinto C. , Steele A. D. , Duque J. , Parashar U. D. . WHO-coordinated Global Rotavirus Surveillance Network ( 2012; ). 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. . Lancet Infect Dis 12:, 136–141. [CrossRef] [PubMed]
    [Google Scholar]
  92. Trujillo-Alonso V. , Maruri-Avidal L. , Arias C. F. , López S. . ( 2011; ). Rotavirus infection induces the unfolded protein response of the cell and controls it through the nonstructural protein NSP3. . J Virol 85:, 12594–12604. [CrossRef] [PubMed]
    [Google Scholar]
  93. Vancott J. L. , McNeal M. M. , Choi A. H. , Ward R. L. . ( 2003; ). The role of interferons in rotavirus infections and protection. . J Interferon Cytokine Res 23:, 163–170. [CrossRef] [PubMed]
    [Google Scholar]
  94. Vesikari T. . ( 2012; ). Rotavirus vaccination: a concise review. . Clin Microbiol Infect 18: (Suppl. 5), 57–63. [CrossRef] [PubMed]
    [Google Scholar]
  95. Weitkamp J. H. , Kallewaard N. L. , Bowen A. L. , Lafleur B. J. , Greenberg H. B. , Crowe J. E. Jr . ( 2005; ). VH1-46 is the dominant immunoglobulin heavy chain gene segment in rotavirus-specific memory B cells expressing the intestinal homing receptor alpha4beta7. . J Immunol 174:, 3454–3460.[PubMed] [CrossRef]
    [Google Scholar]
  96. Wolf M. , Vo P. T. , Greenberg H. B. . ( 2011; ). Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. . J Virol 85:, 2492–2503. [CrossRef] [PubMed]
    [Google Scholar]
  97. Yason C. V. , Summers B. A. , Schat K. A. . ( 1987; ). Pathogenesis of rotavirus infection in various age groups of chickens and turkeys: pathology. . Am J Vet Res 48:, 927–938.[PubMed]
    [Google Scholar]
  98. Youngman K. R. , Franco M. A. , Kuklin N. A. , Rott L. S. , Butcher E. C. , Greenberg H. B. . ( 2002; ). Correlation of tissue distribution, developmental phenotype, and intestinal homing receptor expression of antigen-specific B cells during the murine anti-rotavirus immune response. . J Immunol 168:, 2173–2181.[PubMed] [CrossRef]
    [Google Scholar]
  99. Zhang W. , Wen K. , Azevedo M. S. , Gonzalez A. , Saif L. J. , Li G. , Yousef A. E. , Yuan L. . ( 2008; ). Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. . Vet Immunol Immunopathol 121:, 222–231. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051276-0
Loading
/content/journal/jgv/10.1099/vir.0.051276-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error