1887

Abstract

The 2A proteinase (2A) of human rhinoviruses cleaves the virally encoded polyprotein between the C terminus of VP1 and its own N terminus. Poor understanding of the 2A substrate specificity of this enzyme has hampered progress in developing inhibitors that may serve as antiviral agents. We show here that the 2A of human rhinovirus (HRV) 1A and 2 (rhinoviruses from genetic group A) cannot self-process at the HRV14 (a genetic group B rhinovirus) cleavage site. When the amino acids in the cleavage site of HRV2 2A (Ile-Ile-Thr-Thr-Ala*Gly-Pro-Ser-Asp) were singly or doubly replaced with the corresponding HRV14 residues (Asp-Ile-Lys-Ser-Tyr*Gly-Leu-Gly-Pro) at positions from P3 to P2′, HRV1A and HRV2 2A cleavage took place at WT levels. However, when three or more positions of the HRV1A or 2 2A were substituted (e.g. at P2, P1 and P2′), cleavage was essentially eliminated. Introduction of the full HRV14 cleavage site into a full-length clone of the HRV1A and transfection of HeLa cells with a transcribed RNA did not give rise to viable virus. In contrast, revertant viruses bearing cysteine at the P1 position or proline at P2′ were obtained when an RNA bearing the three inhibitory amino acids was transfected. Reversions in the enzyme affecting substrate specificity were not found in any of the experiments. Modelling of oligopeptide substrates onto the structure of HRV2 2A revealed no appreciable differences in residues of HRV2 and HRV14 in the respective substrate binding sites, suggesting that the overall shape of the substrate is important in determining binding efficiency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051201-0
2013-07-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1535.html?itemId=/content/journal/jgv/10.1099/vir.0.051201-0&mimeType=html&fmt=ahah

References

  1. Acornley J. E., Chapple P. J., Stott E. J., Tyrrell D. A.. ( 1968; ). Selection of variants of rhinoviruses. . Arch Gesamte Virusforsch 23:, 284–287. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baxter N. J., Roetzer A., Liebig H. D., Sedelnikova S. E., Hounslow A. M., Skern T., Waltho J. P.. ( 2006; ). Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. . J Virol 80:, 1451–1462. [CrossRef] [PubMed]
    [Google Scholar]
  3. Callahan P. L., Mizutani S., Colonno R. J.. ( 1985; ). Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. . Proc Natl Acad Sci U S A 82:, 732–736. [CrossRef] [PubMed]
    [Google Scholar]
  4. Crowder S., Kirkegaard K.. ( 2005; ). Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. . Nat Genet 37:, 701–709. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dasso M. C., Jackson R. J.. ( 1989; ). Efficient initiation of mammalian mRNA translation at a CUG codon. . Nucleic Acids Res 17:, 6485–6496. [CrossRef] [PubMed]
    [Google Scholar]
  6. DeLano D. L.. ( 2002; ). The PyMOL Molecular Graphics System. Palo Alto, CA:: DeLano Scientific;.
    [Google Scholar]
  7. Delbaere L. T., Brayer G. D., James M. N.. ( 1979; ). The 2.8 Å resolution structure of Streptomyces griseus protease B and its homology with alpha-chymotrypsin and Streptomyces griseus protease A. . Can J Biochem 57:, 135–144. [CrossRef] [PubMed]
    [Google Scholar]
  8. Duechler M., Skern T., Blaas D., Berger B., Sommergruber W., Kuechler E.. ( 1989; ). Human rhinovirus serotype 2: in vitro synthesis of an infectious RNA. . Virology 168:, 159–161. [CrossRef] [PubMed]
    [Google Scholar]
  9. Glaser W., Triendl A., Skern T.. ( 2003; ). The processing of eIF4GI by human rhinovirus type 2 2Apro: relationship to self-cleavage and role of zinc. . J Virol 77:, 5021–5025. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gorbalenya A. E., Blinov V. M., Donchenko A. P.. ( 1986; ). Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. . FEBS Lett 194:, 253–257. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hanecak R., Semler B. L., Anderson C. W., Wimmer E.. ( 1982; ). Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine–glycine pairs. . Proc Natl Acad Sci U S A 79:, 3973–3977. [CrossRef] [PubMed]
    [Google Scholar]
  12. Holm L., Sander C.. ( 1993a; ). Protein structure comparison by alignment of distance matrices. . J Mol Biol 233:, 123–138. [CrossRef] [PubMed]
    [Google Scholar]
  13. Holm L., Sander C.. ( 1993b; ). Structural alignment of globins, phycocyanins and colicin A. . FEBS Lett 315:, 301–306. [CrossRef] [PubMed]
    [Google Scholar]
  14. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. (editors) ( 2012; ). Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA:: Elsevier;.
    [Google Scholar]
  15. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T.. & other authors ( 2012; ). Picornaviridae. . In Virus Taxonomy. Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 855–880. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego, CA:: Elsevier;.
    [Google Scholar]
  16. Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K.. ( 2009; ). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. . Proteins 77: (Suppl 9), 114–122. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mäkelä M. J., Puhakka T., Ruuskanen O., Leinonen M., Saikku P., Kimpimäki M., Blomqvist S., Hyypiä T., Arstila P.. ( 1998; ). Viruses and bacteria in the etiology of the common cold. . J Clin Microbiol 36:, 539–542.[PubMed]
    [Google Scholar]
  18. McKnight K. L.. ( 2003; ). The human rhinovirus internal cis-acting replication element (cre) exhibits disparate properties among serotypes. . Arch Virol 148:, 2397–2418. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nalam M. N., Ali A., Altman M. D., Reddy G. S., Chellappan S., Kairys V., Ozen A., Cao H., Gilson M. K.. & other authors ( 2010; ). Evaluating the substrate–envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance. . J Virol 84:, 5368–5378. [CrossRef] [PubMed]
    [Google Scholar]
  20. Palmenberg A. C., Pallansch M. A., Rueckert R. R.. ( 1979; ). Protease required for processing picornaviral coat protein resides in the viral replicase gene. . J Virol 32:, 770–778.[PubMed]
    [Google Scholar]
  21. Park N., Skern T., Gustin K. E.. ( 2010; ). Specific cleavage of the nuclear pore complex protein Nup62 by a viral protease. . J Biol Chem 285:, 28796–28805. [CrossRef] [PubMed]
    [Google Scholar]
  22. Petersen J. F., Cherney M. M., Liebig H. D., Skern T., Kuechler E., James M. N.. ( 1999; ). The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. . EMBO J 18:, 5463–5475. [CrossRef] [PubMed]
    [Google Scholar]
  23. Schechter I., Berger A.. ( 1967; ). On the size of the active site in proteases. I. Papain. . Biochem Biophys Res Commun 27:, 157–162. [CrossRef] [PubMed]
    [Google Scholar]
  24. Skern T., Sommergruber W., Blaas D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E.. ( 1985; ). Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. . Nucleic Acids Res 13:, 2111–2126. [CrossRef] [PubMed]
    [Google Scholar]
  25. Skern T., Sommergruber W., Auer H., Volkmann P., Zorn M., Liebig H. D., Fessl F., Blaas D., Kuechler E.. ( 1991; ). Substrate requirements of a human rhinoviral 2A proteinase. . Virology 181:, 46–54. [CrossRef] [PubMed]
    [Google Scholar]
  26. Skern T., Hampoelz B., Guarné A., Fita I., Bergmann E., Petersen J., James M. N. G.. ( 2002; ). Structure and function of picornavirus proteinases. . In Molecular Biology of Picornaviruses, pp. 199–212. Edited by Semler B. L., Wimmer E... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  27. Sommergruber W., Ahorn H., Zöphel A., Maurer-Fogy I., Fessl F., Schnorrenberg G., Liebig H. D., Blaas D., Kuechler E., Skern T.. ( 1992; ). Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. . J Biol Chem 267:, 22639–22644.[PubMed]
    [Google Scholar]
  28. Sousa C., Schmid E. M., Skern T.. ( 2006; ). Defining residues involved in human rhinovirus 2A proteinase substrate recognition. . FEBS Lett 580:, 5713–5717. [CrossRef] [PubMed]
    [Google Scholar]
  29. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W.. ( 1984; ). The complete nucleotide sequence of a common cold virus: human rhinovirus 14. . Nucleic Acids Res 12:, 7859–7875. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stott E. J., Killington R. A.. ( 1972; ). Rhinoviruses. . Annu Rev Microbiol 26:, 503–524. [CrossRef] [PubMed]
    [Google Scholar]
  31. Toyoda H., Nicklin M. J., Murray M. G., Anderson C. W., Dunn J. J., Studier F. W., Wimmer E.. ( 1986; ). A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. . Cell 45:, 761–770. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang Q. M., Sommergruber W., Johnson R. B.. ( 1997; ). Cleavage specificity of human rhinovirus-2 2A protease for peptide substrates. . Biochem Biophys Res Commun 235:, 562–566. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051201-0
Loading
/content/journal/jgv/10.1099/vir.0.051201-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error