1887

Abstract

Porcine epidemic diarrhea virus (PEDV) is the cause of an economically important swine disease. Previous studies suggested that PEDV does not elicit a robust IFN response, but the mechanism(s) used to evade or block this innate immune response was not known. In this study, we found that PEDV infection blocked synthetic dsRNA-induced IFN-β production by interfering with the activation of interferon regulatory factor 3 (IRF3). We identified PEDV replicase encoded papain-like protease 2 (PLP2) as an IFN antagonist that depends on catalytic activity for its function. We show that levels of ubiquitinated proteins are reduced during PEDV infection and that PEDV PLP2 has deubiquitinase (DUB) activity that recognizes and processes both K-48 and K-63 linked polyubiquitin chains. Furthermore, we found that PEDV PLP2 strongly inhibits RIG-I- and STING-activated IFN expression and that PEDV PLP2 can be co-immunoprecipitated with and deubiquitinates RIG-I and STING, the key components of the signalling pathway for IFN expression. These results show that PEDV infection suppresses production of IFN-β and provides evidence indicating that the PEDV papain-like protease 2 acts as a viral DUB to interfere with the RIG-I- and STING-mediated signalling pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051169-0
2013-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1554.html?itemId=/content/journal/jgv/10.1099/vir.0.051169-0&mimeType=html&fmt=ahah

References

  1. Albina E., Carrat C., Charley B.. ( 1998; ). Interferon-alpha response to swine arterivirus (PoAV), the porcine reproductive and respiratory syndrome virus. . J Interferon Cytokine Res 18:, 485–490. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barretto N., Jukneliene D., Ratia K., Chen Z., Mesecar A. D., Baker S. C.. ( 2005; ). The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. . J Virol 79:, 15189–15198. [CrossRef] [PubMed]
    [Google Scholar]
  3. Belgnaoui S. M., Paz S., Hiscott J.. ( 2011; ). Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. . Curr Opin Immunol 23:, 564–572. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhoj V. G., Chen Z. J.. ( 2009; ). Ubiquitylation in innate and adaptive immunity. . Nature 458:, 430–437. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bibeau-Poirier A., Servant M. J.. ( 2008; ). Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling. . Cytokine 43:, 359–367. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bovolenta C., Lou J., Kanno Y., Park B. K., Thornton A. M., Coligan J. E., Schubert M., Ozato K.. ( 1995; ). Vesicular stomatitis virus infection induces a nuclear DNA-binding factor specific for the interferon-stimulated response element. . J Virol 69:, 4173–4181.[PubMed]
    [Google Scholar]
  7. Charley B., Riffault S., Van Reeth K.. ( 2006; ). Porcine innate and adaptative immune responses to influenza and coronavirus infections. . Ann N Y Acad Sci 1081:, 130–136. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chen Z., Wang Y., Ratia K., Mesecar A. D., Wilkinson K. D., Baker S. C.. ( 2007; ). Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. . J Virol 81:, 6007–6018. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen J. F., Sun D. B., Wang C. B., Shi H. Y., Cui X. C., Liu S. W., Qiu H. J., Feng L.. ( 2008; ). Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China. . Virus Genes 36:, 355–364. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen J., Wang C., Shi H., Qiu H., Liu S., Chen X., Zhang Z., Feng L.. ( 2010a; ). Molecular epidemiology of porcine epidemic diarrhea virus in China. . Arch Virol 155:, 1471–1476. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen Z., Zhou X., Lunney J. K., Lawson S., Sun Z., Brown E., Christopher-Hennings J., Knudsen D., Nelson E., Fang Y.. ( 2010b; ). Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. . J Gen Virol 91:, 1047–1057. [CrossRef] [PubMed]
    [Google Scholar]
  12. Clementz M. A., Chen Z., Banach B. S., Wang Y., Sun L., Ratia K., Baez-Santos Y. M., Wang J., Takayama J.. & other authors ( 2010; ). Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. . J Virol 84:, 4619–4629. [CrossRef] [PubMed]
    [Google Scholar]
  13. Coornaert B., Carpentier I., Beyaert R.. ( 2008; ). A20: central gatekeeper in inflammation and immunity. . J Biol Chem 284:, 8217–8221. [CrossRef] [PubMed]
    [Google Scholar]
  14. Devaraj S. G., Wang N., Chen Z., Chen Z., Tseng M., Barretto N., Lin R., Peters C. J., Tseng C. T.. & other authors ( 2007; ). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. . J Biol Chem 282:, 32208–32221. [CrossRef] [PubMed]
    [Google Scholar]
  15. Evans P. C., Ovaa H., Hamon M., Kilshaw P. J., Hamm S., Bauer S., Ploegh H. L., Smith T. S.. ( 2004; ). Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. . Biochem J 378:, 727–734. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fitzgerald K. A., McWhirter S. M., Faia K. L., Rowe D. C., Latz E., Golenbock D. T., Coyle A. J., Liao S. M., Maniatis T.. ( 2003; ). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. . Nat Immunol 4:, 491–496. [CrossRef] [PubMed]
    [Google Scholar]
  17. Friedman C. S., O’Donnell M. A., Legarda-Addison D., Ng A., Cárdenas W. B., Yount J. S., Moran T. M., Basler C. F., Komuro A.. & other authors ( 2008; ). The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. . EMBO Rep 9:, 930–936. [CrossRef] [PubMed]
    [Google Scholar]
  18. Haller O., Weber F.. ( 2007; ). Pathogenic viruses: smart manipulators of the interferon system. . Curr Top Microbiol Immunol 316:, 315–334. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hayakawa S., Shiratori S., Yamato H., Kameyama T., Kitatsuji C., Kashigi F., Goto S., Kameoka S., Fujikura D.. & other authors ( 2011; ). ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. . Nat Immunol 12:, 37–44. [CrossRef] [PubMed]
    [Google Scholar]
  20. Isaacson M. K., Ploegh H. L.. ( 2009; ). Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. . Cell Host Microbe 5:, 559–570. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ishikawa H., Barber G. N.. ( 2008; ). STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. . Nature 455:, 674–678. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kattenhorn L. M., Korbel G. A., Kessler B. M., Spooner E., Ploegh H. L.. ( 2005; ). A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. . Mol Cell 19:, 547–557. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kayagaki N., Phung Q., Chan S., Chaudhari R., Quan C., O’Rourke K. M., Eby M., Pietras E., Cheng G.. & other authors ( 2007; ). DUBA: a deubiquitinase that regulates type I interferon production. . Science 318:, 1628–1632. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kim E. T., Oh S. E., Lee Y. O., Gibson W., Ahn J. H.. ( 2009; ). Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. . J Virol 83:, 12046–12056. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kopecky-Bromberg S. A., Martínez-Sobrido L., Frieman M., Baric R. A., Palese P.. ( 2007; ). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. . J Virol 81:, 548–557. [CrossRef] [PubMed]
    [Google Scholar]
  26. Laude H., Van Reeth K., Pensaert M.. ( 1993; ). Porcine respiratory coronavirus: molecular features and virus-host interactions. . Vet Res 24:, 125–150.[PubMed]
    [Google Scholar]
  27. Lindner H. A., Fotouhi-Ardakani N., Lytvyn V., Lachance P., Sulea T., Ménard R.. ( 2005; ). The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. . J Virol 79:, 15199–15208. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lu X., Pan J., Tao J., Guo D.. ( 2011; ). SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. . Virus Genes 42:, 37–45. [CrossRef] [PubMed]
    [Google Scholar]
  29. Miller L. C., Laegreid W. W., Bono J. L., Chitko-McKown C. G., Fox J. M.. ( 2004; ). Interferon type I response in porcine reproductive and respiratory syndrome virus-infected MARC-145 cells. . Arch Virol 149:, 2453–2463. [CrossRef] [PubMed]
    [Google Scholar]
  30. Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C. T., Makino S.. ( 2008; ). Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. . J Virol 82:, 4471–4479. [CrossRef] [PubMed]
    [Google Scholar]
  31. O’Neill L. A., Bowie A. G.. ( 2010; ). Sensing and signaling in antiviral innate immunity. . Curr Biol 20:, R328–R333. [CrossRef] [PubMed]
    [Google Scholar]
  32. Oganesyan G., Saha S. K., Guo B., He J. Q., Shahangian A., Zarnegar B., Perry A., Cheng G.. ( 2006; ). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. . Nature 439:, 208–211. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pensaert M. B., de Bouck P.. ( 1978; ). A new coronavirus-like particle associated with diarrhea in swine. . Arch Virol 58:, 243–247. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pickart C. M., Fushman D.. ( 2004; ). Polyubiquitin chains: polymeric protein signals. . Curr Opin Chem Biol 8:, 610–616. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sawicki S. G., Sawicki D. L., Siddell S. G.. ( 2007; ). A contemporary view of coronavirus transcription. . J Virol 81:, 20–29. [CrossRef] [PubMed]
    [Google Scholar]
  36. Schindler C., Levy D. E., Decker T.. ( 2007; ). JAK-STAT signaling: from interferons to cytokines. . J Biol Chem 282:, 20059–20063. [CrossRef] [PubMed]
    [Google Scholar]
  37. Siu K. L., Kok K. H., Ng M. H., Poon V. K., Yuen K. Y., Zheng B. J., Jin D. Y.. ( 2009; ). Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKKϵ complex. . J Biol Chem 284:, 16202–16209. [CrossRef] [PubMed]
    [Google Scholar]
  38. Sun S. C.. ( 2008; ). Deubiquitylation and regulation of the immune response. . Nat Rev Immunol 8:, 501–511. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sun L., Yang Y. D., Liu D. B., Xing Y. L., Chen X. J., Chen Z. B.. ( 2010a; ). Deubiquitinase activity and regulation of antiviral innate immune responses by papain-like proteases of human coronavirus NL63. . Prog Biochem Biophys 37:, 871–880. [CrossRef]
    [Google Scholar]
  40. Sun Z., Chen Z., Lawson S. R., Fang Y.. ( 2010b; ). The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. . J Virol 84:, 7832–7846. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sun L., Xing Y., Chen X., Zheng Y., Yang Y., Nichols D. B., Clementz M. A., Banach B. S., Li K.. & other authors ( 2012; ). Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. . PLoS ONE 7:, e30802. [CrossRef] [PubMed]
    [Google Scholar]
  42. Thanos D., Maniatis T.. ( 1995; ). Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. . Cell 83:, 1091–1100. [CrossRef] [PubMed]
    [Google Scholar]
  43. van der Hoek L., Sure K., Ihorst G., Stang A., Pyrc K., Jebbink M. F., Petersen G., Forster J., Berkhout B., Uberla K.. ( 2005; ). Croup is associated with the novel coronavirus NL63. . PLoS Med 2:, e240. [CrossRef] [PubMed]
    [Google Scholar]
  44. van Kasteren P. B., Beugeling C., Ninaber D. K., Frias-Staheli N., van Boheemen S., García-Sastre A., Snijder E. J., Kikkert M.. ( 2012; ). Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. . J Virol 86:, 773–785. [CrossRef] [PubMed]
    [Google Scholar]
  45. Vaux D. L., Fidler F., Cumming G.. ( 2012; ). Replicates and repeats–what is the difference and is it significant? A brief discussion of statistics and experimental design. . EMBO Rep 13:, 291–296. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wang D., Fang L., Li P., Sun L., Fan J., Zhang Q., Luo R., Liu X., Li K.. & other authors ( 2011a; ). The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. . J Virol 85:, 3758–3766. [CrossRef] [PubMed]
    [Google Scholar]
  47. Wang G., Chen G., Zheng D., Cheng G., Tang H.. ( 2011b; ). PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. . PLoS ONE 6:, e17192. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wilkins C., Gale M. Jr. ( 2010; ). Recognition of viruses by cytoplasmic sensors. . Curr Opin Immunol 22:, 41–47. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wojdyla J. A., Manolaridis I., van Kasteren P. B., Kikkert M., Snijder E. J., Gorbalenya A. E., Tucker P. A.. ( 2010; ). Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates. . J Virol 84:, 10063–10073. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yoshida H., Jono H., Kai H., Li J. D.. ( 2005; ). The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 and TRAF7. . J Biol Chem 280:, 41111–41121. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zeng W., Sun L., Jiang X., Chen X., Hou F., Adhikari A., Xu M., Chen Z. J.. ( 2010; ). Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. . Cell 141:, 315–330. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zheng D., Chen G., Guo B., Cheng G., Tang H.. ( 2008; ). PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. . Cell Res 18:, 1105–1113.[PubMed]
    [Google Scholar]
  53. Zhong B., Zhang Y., Tan B., Liu T. T., Wang Y. Y., Shu H. B.. ( 2010; ). The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. . J Immunol 184:, 6249–6255. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051169-0
Loading
/content/journal/jgv/10.1099/vir.0.051169-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error