1887

Abstract

MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signalling and immune response. Studies also suggest that miRNAs are important in host–virus interactions where the host limits virus infection by differentially expressing miRNAs that target essential viral genes. Here, we identified conserved and new miRNAs from cells (Sf9) using a combination of deep sequencing and bioinformatics as well as experimental approaches. miRNAs share common features of miRNAs in other organisms, such as uracil (U) at the 5′ end of miRNA. The 5′ ends of the miRNAs were more conserved than the 3′ ends, revealing evolutionary protection of the seed region in miRNAs. The predominant miRNAs were found to be conserved among arthropods. The majority of homologous miRNAs were found in , with 76 of the 90 identified miRNAs. We found that seed shifting and arm switching have happened in this insect's miRNAs. Expression levels of the majority of miRNAs changed following baculovirus infection. Results revealed that baculovirus infection mainly led to an overall suppression of cellular miRNAs. We found four different genes being regulated by sfr-miR-184 at the post-transcriptional level. The data presented here further support conservation of miRNAs in insects and other organisms. In addition, the results reveal a differential expression of host miRNAs upon baculovirus infection, suggesting their potential roles in host–virus interactions. Seed shifting and arm switching happened during evolution of miRNAs in different insects and caused miRNA diversification, which led to changes in the target repository of miRNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.051060-0
2013-06-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1385.html?itemId=/content/journal/jgv/10.1099/vir.0.051060-0&mimeType=html&fmt=ahah

References

  1. Aboobaker A. A., Tomancak P., Patel N., Rubin G. M., Lai E. C.. ( 2005;). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. . Proc Natl Acad Sci U S A 102:, 18017–18022. [CrossRef][PubMed]
    [Google Scholar]
  2. Asgari S.. ( 2011;). Role of microRNAs in insect host-microorganism interactions. . Front Physiol 2:, 48. [CrossRef][PubMed]
    [Google Scholar]
  3. Asgari S.. ( 2013;). MicroRNA functions in insects. . Insect Biochem Mol Biol 43:, 388–397. [CrossRef][PubMed]
    [Google Scholar]
  4. Bartel D. P.. ( 2004;). MicroRNAs: genomics, biogenesis, mechanism, and function. . Cell 116:, 281–297. [CrossRef][PubMed]
    [Google Scholar]
  5. Bartel D. P.. ( 2009;). MicroRNAs: target recognition and regulatory functions. . Cell 136:, 215–233. [CrossRef][PubMed]
    [Google Scholar]
  6. Becam I., Rafel N., Hong X., Cohen S. M., Milán M.. ( 2011;). Notch-mediated repression of bantam miRNA contributes to boundary formation in the Drosophila wing. . Development 138:, 3781–3789. [CrossRef][PubMed]
    [Google Scholar]
  7. Breitenbach J. E., Shelby K. S., Popham H. J. R.. ( 2011;). Baculovirus induced transcripts in hemocytes from the larvae of Heliothis virescens.. Viruses 3:, 2047–2064. [CrossRef][PubMed]
    [Google Scholar]
  8. Brennecke J., Hipfner D. R., Stark A., Russell R. B., Cohen S. M.. ( 2003;). bantam Encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila.. Cell 113:, 25–36. [CrossRef][PubMed]
    [Google Scholar]
  9. Carinhas N., Robitaille A. M., Moes S., Carrondo M. J. T., Jenoe P., Oliveira R., Alves P. M.. ( 2011;). Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection. . PLoS ONE 6:, e26444. [CrossRef][PubMed]
    [Google Scholar]
  10. Carmel I., Shomron N., Heifetz Y.. ( 2012;). Does base-pairing strength play a role in microRNA repression?. RNA 18:, 1947–1956. [CrossRef][PubMed]
    [Google Scholar]
  11. Cristino A. S., Tanaka E. D., Rubio M., Piulachs M. D., Belles X.. ( 2011;). Deep sequencing of organ- and stage-specific microRNAs in the evolutionarily basal insect Blattella germanica (L.) (Dictyoptera, Blattellidae). . PLoS ONE 6:, e19350. [CrossRef][PubMed]
    [Google Scholar]
  12. Cullen B. R.. ( 2006;). Viruses and microRNAs. . Nat Genet 38: (Suppl), S25–S30. [CrossRef][PubMed]
    [Google Scholar]
  13. Cullen B. R.. ( 2009;). Viral and cellular messenger RNA targets of viral microRNAs. . Nature 457:, 421–425. [CrossRef][PubMed]
    [Google Scholar]
  14. Czech B., Hannon G. J.. ( 2011;). Small RNA sorting: matchmaking for Argonautes. . Nat Rev Genet 12:, 19–31. [CrossRef][PubMed]
    [Google Scholar]
  15. Czech B., Malone C. D., Zhou R., Stark A., Schlingeheyde C., Dus M., Perrimon N., Kellis M., Wohlschlegel J. A.. & other authors ( 2008;). An endogenous small interfering RNA pathway in Drosophila.. Nature 453:, 798–802. [CrossRef][PubMed]
    [Google Scholar]
  16. Fernandez-Valverde S. L., Taft R. J., Mattick J. S.. ( 2010;). Dynamic isomiR regulation in Drosophila development. . RNA 16:, 1881–1888. [CrossRef][PubMed]
    [Google Scholar]
  17. Fullaondo A., Lee S. Y.. ( 2012;). Identification of putative miRNA involved in Drosophila melanogaster immune response. . Dev Comp Immunol 36:, 267–273. [CrossRef][PubMed]
    [Google Scholar]
  18. Ghildiyal M., Xu J., Seitz H., Weng Z., Zamore P. D.. ( 2010;). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. . RNA 16:, 43–56. [CrossRef][PubMed]
    [Google Scholar]
  19. Gomez-Orte E., Belles X.. ( 2009;). MicroRNA-dependent metamorphosis in hemimetabolan insects. . Proc Natl Acad Sci U S A 106:, 21678–21682. [CrossRef][PubMed]
    [Google Scholar]
  20. Griffiths-Jones S., Hui J. H. L., Marco A., Ronshaugen M.. ( 2011;). MicroRNA evolution by arm switching. . EMBO Rep 12:, 172–177. [CrossRef][PubMed]
    [Google Scholar]
  21. Guerra-Assunção J. A., Enright A. J.. ( 2010;). MapMi: automated mapping of microRNA loci. . BMC Bioinformatics 11:, 133. [CrossRef][PubMed]
    [Google Scholar]
  22. Hofacker I. L.. ( 2003;). Vienna RNA secondary structure server. . Nucleic Acids Res 31:, 3429–3431. [CrossRef][PubMed]
    [Google Scholar]
  23. Hussain M., Asgari S.. ( 2010;). Functional analysis of a cellular microRNA in insect host-ascovirus interaction. . J Virol 84:, 612–620. [CrossRef][PubMed]
    [Google Scholar]
  24. Hussain M., Frentiu F. D., Moreira L. A., O’Neill S. L., Asgari S.. ( 2011;). Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti.. Proc Natl Acad Sci U S A 108:, 9250–9255. [CrossRef][PubMed]
    [Google Scholar]
  25. Hussain M., Walker T., O’Neill S. L., Asgari S.. ( 2013;). Blood meal induced microRNA regulates development and immune associated genes in the Dengue mosquito vector, Aedes aegypti.. Insect Biochem Mol Biol 43:, 146–152. [CrossRef][PubMed]
    [Google Scholar]
  26. Iovino N., Pane A., Gaul U.. ( 2009;). miR-184 has multiple roles in Drosophila female germline development. . Dev Cell 17:, 123–133. [CrossRef][PubMed]
    [Google Scholar]
  27. Jehle J. A., Lange M., Wang H., Hu Z., Wang Y., Hauschild R.. ( 2006;). Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. . Virology 346:, 180–193. [CrossRef][PubMed]
    [Google Scholar]
  28. Kadener S., Menet J. S., Sugino K., Horwich M. D., Weissbein U., Nawathean P., Vagin V. V., Zamore P. D., Nelson S. B., Rosbash M.. ( 2009;). A role for microRNAs in the Drosophila circadian clock. . Genes Dev 23:, 2179–2191. [CrossRef][PubMed]
    [Google Scholar]
  29. King L. A., Possee R. D.. ( 1992;). The Baculovirus Expression System: A Laboratory Guide. London: Chapman & Hall;. [CrossRef]
    [Google Scholar]
  30. Kozomara A., Griffiths-Jones S.. ( 2011;). miRBase: integrating microRNA annotation and deep-sequencing data. . Nucleic Acids Res 39: (Database issue), D152–D157. [CrossRef][PubMed]
    [Google Scholar]
  31. Krüger J., Rehmsmeier M.. ( 2006;). RNAhybrid: microRNA target prediction easy, fast and flexible. . Nucleic Acids Res 34: (Web Server issue), W451––W454. [CrossRef][PubMed]
    [Google Scholar]
  32. Lau N. C., Lim L. P., Weinstein E. G., Bartel D. P.. ( 2001;). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.. Science 294:, 858–862. [CrossRef][PubMed]
    [Google Scholar]
  33. Lecellier C.-H., Dunoyer P., Arar K., Lehmann-Che J., Eyquem S., Himber C., Saïb A., Voinnet O.. ( 2005;). A cellular microRNA mediates antiviral defense in human cells. . Science 308:, 557–560. [CrossRef][PubMed]
    [Google Scholar]
  34. Lee R. C., Feinbaum R. L., Ambros V.. ( 1993;). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. . Cell 75:, 843–854. [CrossRef][PubMed]
    [Google Scholar]
  35. Lee L. W., Zhang S., Etheridge A., Ma L., Martin D., Galas D., Wang K.. ( 2010;). Complexity of the microRNA repertoire revealed by next-generation sequencing. . RNA 16:, 2170–2180. [CrossRef][PubMed]
    [Google Scholar]
  36. Lewis B. P., Burge C. B., Bartel D. P.. ( 2005;). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. . Cell 120:, 15–20. [CrossRef][PubMed]
    [Google Scholar]
  37. Li Y., Padgett R. W.. ( 2012;). bantam Is required for optic lobe development and glial cell proliferation. . PLoS ONE 7:, e32910. [CrossRef][PubMed]
    [Google Scholar]
  38. Ma F., Liu X., Li D., Wang P., Li N., Lu L., Cao X.. ( 2010;). MicroRNA-466l upregulates IL-10 expression in TLR-triggered macrophages by antagonizing RNA-binding protein tristetraprolin-mediated IL-10 mRNA degradation. . J Immunol 184:, 6053–6059. [CrossRef][PubMed]
    [Google Scholar]
  39. Marco A., Hui J. H. L., Ronshaugen M., Griffiths-Jones S.. ( 2010;). Functional shifts in insect microRNA evolution. . Genome Biol Evol 2:, 686–696.[PubMed]
    [Google Scholar]
  40. Morin R. D., O’Connor M. D., Griffith M., Kuchenbauer F., Delaney A., Prabhu A.-L., Zhao Y., McDonald H., Zeng T.. & other authors ( 2008;). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. . Genome Res 18:, 610–621. [CrossRef][PubMed]
    [Google Scholar]
  41. Nielsen C. B., Shomron N., Sandberg R., Hornstein E., Kitzman J., Burge C. B.. ( 2007;). Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. . RNA 13:, 1894–1910. [CrossRef][PubMed]
    [Google Scholar]
  42. Nobiron I., O’Reilly D. R., Olszewski J. A.. ( 2003;). Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: a global analysis of host gene regulation during infection, using a differential display approach. . J Gen Virol 84:, 3029–3039. [CrossRef][PubMed]
    [Google Scholar]
  43. Parrish J. Z., Xu P., Kim C. C., Jan L. Y., Jan Y. N.. ( 2009;). The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in Drosophila sensory neurons. . Neuron 63:, 788–802. [CrossRef][PubMed]
    [Google Scholar]
  44. Pasquinelli A. E.. ( 2012;). MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. . Nat Rev Genet 13:, 271–282.[PubMed]
    [Google Scholar]
  45. Peng H. W., Slattery M., Mann R. S.. ( 2009;). Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. . Genes Dev 23:, 2307–2319. [CrossRef][PubMed]
    [Google Scholar]
  46. Popham H. J. R., Grasela J. J., Goodman C. L., McIntosh A. H.. ( 2010;). Baculovirus infection influences host protein expression in two established insect cell lines. . J Insect Physiol 56:, 1237–1245. [CrossRef][PubMed]
    [Google Scholar]
  47. Possee R. D., Griffiths C. M., Hitchman R. B., Chambers A., Murguia-Meca F., Danquah J., Jeshtadi A., King L. A.. ( 2010;). Baculoviruses: biology, replication and exploitation. . In Insect Virology. Edited by Asgari S., Johnson, Chapter 2. K. N.. Norwich, UK: Caister Academic Press;.
    [Google Scholar]
  48. Rao Z., He W., Liu L., Zheng S., Huang L., Feng Q.. ( 2012;). Identification, expression and target gene analyses of Micrornas in Spodoptera litura.. PLoS ONE 7:, e37730. [CrossRef][PubMed]
    [Google Scholar]
  49. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R.. ( 2004;). Fast and effective prediction of microRNA/target duplexes. . RNA 10:, 1507–1517. [CrossRef][PubMed]
    [Google Scholar]
  50. Reinhart B. J., Slack F. J., Basson M., Pasquinelli A. E., Bettinger J. C., Rougvie A. E., Horvitz H. R., Ruvkun G.. ( 2000;). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.. Nature 403:, 901–906. [CrossRef][PubMed]
    [Google Scholar]
  51. Rubio M., de Horna A., Belles X.. ( 2012;). MicroRNAs in metamorphic and non-metamorphic transitions in hemimetabolan insect metamorphosis. . BMC Genomics 13:, 386. [CrossRef][PubMed]
    [Google Scholar]
  52. Ruby J. G., Stark A., Johnston W. K., Kellis M., Bartel D. P., Lai E. C.. ( 2007;). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. . Genome Res 17:, 1850–1864. [CrossRef][PubMed]
    [Google Scholar]
  53. Salem T. Z., Zhang F., Xie Y., Thiem S. M.. ( 2011;). Comprehensive analysis of host gene expression in Autographa californica nucleopolyhedrovirus-infected Spodoptera frugiperda cells. . Virology 412:, 167–178. [CrossRef][PubMed]
    [Google Scholar]
  54. Seto A. G., Kingston R. E., Lau N. C.. ( 2007;). The coming of age for Piwi proteins. . Mol Cell 26:, 603–609. [CrossRef][PubMed]
    [Google Scholar]
  55. Singh C. P., Singh J., Nagaraju J.. ( 2012;). A baculovirus-encoded MicroRNA (miRNA) suppresses its host miRNA biogenesis by regulating the exportin-5 cofactor Ran. . J Virol 86:, 7867–7879. [CrossRef][PubMed]
    [Google Scholar]
  56. Siomi M. C., Sato K., Pezic D., Aravin A. A.. ( 2011;). PIWI-interacting small RNAs: the vanguard of genome defence. . Nat Rev Mol Cell Biol 12:, 246–258. [CrossRef][PubMed]
    [Google Scholar]
  57. Skalsky R. L., Cullen B. R.. ( 2010;). Viruses, microRNAs, and host interactions. . Annu Rev Microbiol 64:, 123–141. [CrossRef][PubMed]
    [Google Scholar]
  58. Skalsky R. L., Vanlandingham D. L., Scholle F., Higgs S., Cullen B. R.. ( 2010;). Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus.. BMC Genomics 11:, 119. [CrossRef][PubMed]
    [Google Scholar]
  59. Tomari Y., Du T., Zamore P. D.. ( 2007;). Sorting of Drosophila small silencing RNAs. . Cell 130:, 299–308. [CrossRef][PubMed]
    [Google Scholar]
  60. Vasudevan S.. ( 2012;). Posttranscriptional upregulation by microRNAs. . Wiley Interdiscip Rev RNA 3:, 311–330. [CrossRef][PubMed]
    [Google Scholar]
  61. Wightman B., Ha I., Ruvkun G.. ( 1993;). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.. Cell 75:, 855–862. [CrossRef][PubMed]
    [Google Scholar]
  62. Winter J., Jung S., Keller S., Gregory R. I., Diederichs S.. ( 2009;). Many roads to maturity: microRNA biogenesis pathways and their regulation. . Nat Cell Biol 11:, 228–234. [CrossRef][PubMed]
    [Google Scholar]
  63. Yang Y., Xu S., Xia L., Wang J., Wen S., Jin P., Chen D.. ( 2009;). The bantam microRNA is associated with Drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. . PLoS Genet 5:, e1000444. [CrossRef][PubMed]
    [Google Scholar]
  64. Yu X., Zhou Q., Li S.-C., Luo Q., Cai Y., Lin W. C., Chen H., Yang Y., Hu S., Yu J.. ( 2008;). The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. . PLoS ONE 3:, e2997. [CrossRef][PubMed]
    [Google Scholar]
  65. Zhang Y., Zhou X., Ge X., Jiang J., Li M., Jia S., Yang X., Kan Y., Miao X.. & other authors ( 2009;). Insect-specific microRNA involved in the development of the silkworm Bombyx mori.. PLoS ONE 4:, e4677. [CrossRef][PubMed]
    [Google Scholar]
  66. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.051060-0
Loading
/content/journal/jgv/10.1099/vir.0.051060-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Supplementary tables 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error