Creation of a completely helper cell-dependent recombinant morbillivirus Open Access

Abstract

We have created a completely helper cell-dependent morbillivirus by modifying the genome to remove the coding sequence of the phosphoprotein (P) and recovering the recombinant virus in a cell line constitutively expressing the P protein. The P protein-deleted virus (P) grew very inefficiently unless both of the viral accessory proteins (V and C) were also expressed. Growth of the virus was restricted to the P-expressing cell line. The P virus grew more slowly than the parental virus and expressed much less viral protein in infected cells. The technique could be used to create virus-like particles for use as a vaccine or as antigen in immunological or serological assays.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.050872-0
2013-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1195.html?itemId=/content/journal/jgv/10.1099/vir.0.050872-0&mimeType=html&fmt=ahah

References

  1. Anderson J., McKay J. A. 1994; The detection of antibodies against peste des petits ruminants virus in cattle, sheep and goats and the possible implications to rinderpest control programmes. Epidemiol Infect 112:225–231 [View Article][PubMed]
    [Google Scholar]
  2. Anderson J., McKay J. A., Butcher R. N. 1990; The use of monoclonal antibodies in competitive ELISA for the detection of antibodies to rinderpest and peste des petits ruminants viruses. In Seromonitoring of Rinderpest throughout Africa: Phase One Proceedings of the Final Research Coordination Meeting of the IAEA Rinderpest Control Projects, Cote d’Ivoire 19–23 November 1990 IAEA-TECDOC-623 Vienna: International Atomic Energy Agency;
    [Google Scholar]
  3. Baron M. D., Barrett T. 1997; Rescue of rinderpest virus from cloned cDNA. J Virol 71:1265–1271[PubMed]
    [Google Scholar]
  4. Baron M. D., Barrett T. 2000; Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J Virol 74:2603–2611 [View Article][PubMed]
    [Google Scholar]
  5. Baron M. D., Foster-Cuevas M., Baron J., Barrett T. 1999; Expression in cattle of epitopes of a heterologous virus using a recombinant rinderpest virus. J Gen Virol 80:2031–2039[PubMed]
    [Google Scholar]
  6. Brown D. D., Collins F. M., Duprex W. P., Baron M. D., Barrett T., Rima B. K. 2005; ‘Rescue’ of mini-genomic constructs and viruses by combinations of morbillivirus N, P and L proteins. J Gen Virol 86:1077–1081 [View Article][PubMed]
    [Google Scholar]
  7. Cathomen T., Mrkic B., Spehner D., Drillien R., Naef R., Pavlovic J., Aguzzi A., Billeter M. A., Cattaneo R. 1998; A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908 [View Article][PubMed]
    [Google Scholar]
  8. Cattaneo R., Kaelin K., Baczko K., Billeter M. A. 1989; Measles virus editing provides an additional cysteine-rich protein. Cell 56:759–764 [View Article][PubMed]
    [Google Scholar]
  9. Gassen U., Collins F. M., Duprex W. P., Rima B. K. 2000; Establishment of a rescue system for canine distemper virus. J Virol 74:10737–10744 [View Article][PubMed]
    [Google Scholar]
  10. Halfmann P., Kim J. H., Ebihara H., Noda T., Neumann G., Feldmann H., Kawaoka Y. 2008; Generation of biologically contained Ebola viruses. Proc Natl Acad Sci U S A 105:1129–1133 [View Article][PubMed]
    [Google Scholar]
  11. Hu Q., Chen W., Huang K., Baron M. D., Bu Z. 2012; Rescue of recombinant peste des petits ruminants virus: creation of a GFP-expressing virus and application in rapid virus neutralization test. Vet Res 43:48 [View Article][PubMed]
    [Google Scholar]
  12. Mahapatra M., Parida S., Baron M. D., Barrett T. 2006; Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virus function better as a homologous complex. J Gen Virol 87:2021–2029 [View Article][PubMed]
    [Google Scholar]
  13. Mühlberger E., Weik M., Volchkov V. E., Klenk H. D., Becker S. 1999; Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73:2333–2342[PubMed]
    [Google Scholar]
  14. Nakatsu Y., Takeda M., Ohno S., Shirogane Y., Iwasaki M., Yanagi Y. 2008; Measles virus circumvents the host interferon response by different actions of the C and V proteins. J Virol 82:8296–8306 [View Article][PubMed]
    [Google Scholar]
  15. Nanda S. K., Baron M. D. 2006; Rinderpest virus blocks type I and type II interferon action: role of structural and nonstructural proteins. J Virol 80:7555–7568 [View Article][PubMed]
    [Google Scholar]
  16. Ohno S., Ono N., Takeda M., Takeuchi K., Yanagi Y. 2004; Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85:2991–2999 [View Article][PubMed]
    [Google Scholar]
  17. Palosaari H., Parisien J. P., Rodriguez J. J., Ulane C. M., Horvath C. M. 2003; STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644 [View Article][PubMed]
    [Google Scholar]
  18. Parks C. L., Witko S. E., Kotash C., Lin S. L., Sidhu M. S., Udem S. A. 2006; Role of V protein RNA binding in inhibition of measles virus minigenome replication. Virology 348:96–106 [View Article][PubMed]
    [Google Scholar]
  19. Radecke F., Billeter M. A. 1996; The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology 217:418–421 [View Article][PubMed]
    [Google Scholar]
  20. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784[PubMed]
    [Google Scholar]
  21. Schneider H., Kaelin K., Billeter M. A. 1997; Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227:314–322 [View Article][PubMed]
    [Google Scholar]
  22. Spehner D., Drillien R., Howley P. M. 1997; The assembly of the measles virus nucleoprotein into nucleocapsid-like particles is modulated by the phosphoprotein. Virology 232:260–268 [View Article][PubMed]
    [Google Scholar]
  23. Takeuchi K., Kadota S. I., Takeda M., Miyajima N., Nagata K. 2003; Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545:177–182 [View Article][PubMed]
    [Google Scholar]
  24. Tatsuo H., Yanagi Y. 2002; The morbillivirus receptor SLAM (CD150). Microbiol Immunol 46:135–142[PubMed] [CrossRef]
    [Google Scholar]
  25. Tober C., Seufert M., Schneider H., Billeter M. A., Johnston I. C., Niewiesk S., ter Meulen V., Schneider-Schaulies S. 1998; Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72:8124–8132[PubMed]
    [Google Scholar]
  26. Volchkov V. E., Volchkova V. A., Muhlberger E., Kolesnikova L. V., Weik M., Dolnik O., Klenk H. D. 2001; Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969 [View Article][PubMed]
    [Google Scholar]
  27. von Messling V., Springfeld C., Devaux P., Cattaneo R. 2003; A ferret model of canine distemper virus virulence and immunosuppression. J Virol 77:12579–12591 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.050872-0
Loading
/content/journal/jgv/10.1099/vir.0.050872-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed