1887

Abstract

A new disorder was observed on southern highbush blueberries in several south-eastern states in the USA. Symptoms included irregularly shaped circular spots or blotches with green centres on the upper and lower surfaces of leaves. Double-stranded RNA was extracted from symptomatic leaves suggesting the presence of virus(es) possibly involved in the disease. Sequencing revealed the presence of a novel RNA virus with a ~14 kb genome divided into four RNA segments. Sequence analyses showed that the virus, for which we propose the name Blueberry necrotic ring blotch virus (BNRBV), possesses protein domains conserved across RNA viruses in the alpha-virus-like supergroup. Phylogenetic inferences using different genes placed BNRBV in a clade that includes the , the genus (CiLV) and the recently characterized (HGSV). Despite the strong genetic relationships found among BNRBV, and HGSV, the genome of BNRBV contains three features that distinguish it significantly from its closest relatives: (i) the presence of two helicase domains with different evolutionary pathways, (ii) the existence of three conserved nucleotide stretches located at the 3′ non-coding regions of each RNA segment and (iii) the conservation of terminal nucleotide motifs across each segment. Furthermore, CiLV and HGSV possess poly(A)-tailed bipartite and tripartite genomes, respectively, whereas BNRBV has a quadra-partite genome lacking a poly(A) tail. Based on these genetic features a new genus is proposed for the classification of BNRBV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.050393-0
2013-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1426.html?itemId=/content/journal/jgv/10.1099/vir.0.050393-0&mimeType=html&fmt=ahah

References

  1. Ahlquist P. 2006; Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 4:371–382 [View Article][PubMed]
    [Google Scholar]
  2. An H., Melcher U., Doss P., Payton M., Guenzi A. C., Verchot-Lubicz J. 2003; Evidence that the 37 kDa protein of Soil-borne wheat mosaic virus is a virus movement protein. J Gen Virol 84:3153–3163 [View Article][PubMed]
    [Google Scholar]
  3. Attoui H., Billoir F., Cantaloube J. F., Biagini P., de Micco P., de Lamballerie X. 2000; Strategies for the sequence determination of viral dsRNA genomes. J Virol Methods 89:147–158 [View Article][PubMed]
    [Google Scholar]
  4. Bañados M. 2009; Expanding blueberry production into non-traditional production areas: northern Chile and Argentina, Mexico and Spain. Acta Hortic 810:439–445
    [Google Scholar]
  5. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251 [View Article][PubMed]
    [Google Scholar]
  6. Dreher T. W. 1999; Functions of the 3′-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol 37:151–174 [View Article][PubMed]
    [Google Scholar]
  7. Dreher T. W., Rao A. L. N., Hall T. C. 1989; Replication in vivo of mutant brome mosaic virus RNAs defective in aminoacylation. J Mol Biol 206:425–438 [View Article][PubMed]
    [Google Scholar]
  8. Edgar R. C. 2004; MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  9. Efron B. 1982 The Jackknife, the Bootstrap and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38 Philadelphia: SIAM; [View Article]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Froussard P. 1992; A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res 20:2900 [View Article][PubMed]
    [Google Scholar]
  12. Fuchs M., Abawi G. S., Marsella-Herrick P., Cox R., Cox K. D., Carroll J. E., Martin R. R. 2010; Occurrence of Tomato ringspot virus and Tobacco ringspot virus in highbush blueberry in New York State. J Plant Pathol 92:451–459
    [Google Scholar]
  13. Geisler M. 2012; Ag Marketing Resource Center, Iowa State University. http://www.agmrc.org/commodities__products/fruits/blueberries-profile/
  14. Goodwin J. B., Skuzeski J. M., Dreher T. W. 1997; Characterization of chimeric turnip yellow mosaic virus genomes that are infectious in the absence of aminoacylation. Virology 230:113–124 [View Article][PubMed]
    [Google Scholar]
  15. Gorbalenya A. E., Koonin E. V. 1993; Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429 [View Article]
    [Google Scholar]
  16. Gottula J., Cox K., Carroll J., Fuchs M. F. 2012; Blueberry shock disease. http://www.nysipm.cornell.edu/factsheets/berries/bb_shock.pdf
  17. Hernandez D., François P., Farinelli L., Osterås M., Schrenzel J. 2008; De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809 [View Article][PubMed]
    [Google Scholar]
  18. Huang X., Madan A. 1999; CAP3: A DNA sequence assembly program. Genome Res 9:868–877 [View Article][PubMed]
    [Google Scholar]
  19. Isogai M., Uyeda I., Hataya T. 1998; An efficient cloning strategy for viral double-stranded RNAs with unknown sequences. Ann Phytopathol Soc Jpn 64:244–248 [View Article][PubMed]
    [Google Scholar]
  20. Kadaré G., Haenni A.-L. 1997; Virus-encoded RNA helicases. J Virol 71:2583–2590[PubMed]
    [Google Scholar]
  21. Koev G., Liu S., Beckett R., Miller W. A. 2002; The 3′ terminal structure required for replication of Barley yellow dwarf virus RNA contains an embedded 3′ end. Virology 292:114–126 [View Article][PubMed]
    [Google Scholar]
  22. Koonin E. V., Dolja V. V., Morris T. J. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430 [View Article][PubMed]
    [Google Scholar]
  23. Laforest S. M., Gehrke L. 2004; Spatial determinants of the alfalfa mosaic virus coat protein binding site. RNA 10:48–58 [View Article][PubMed]
    [Google Scholar]
  24. Lake J. A. 1991; The order of sequence alignment can bias the selection of tree topology. Mol Biol Evol 8:378–385[PubMed]
    [Google Scholar]
  25. Locali-Fabris E. C., Freitas-Astúa J., Souza A. A., Takita M. A., Astúa-Monge G., Antonioli-Luizon R., Rodrigues V., Targon M. L. P. N., Machado M. A. 2006; Complete nucleotide sequence, genomic organization and phylogenetic analysis of Citrus leprosis virus cytoplasmic type. J Gen Virol 87:2721–2729 [View Article][PubMed]
    [Google Scholar]
  26. Lorenz R., Bernhart S. H., Höner Zu Siederdissen C., Tafer H., Flamm C., Stadler P. F., Hofacker I. L. 2011; ViennaRNA Package 2.0. Algorithms Mol Biol 6:26 [View Article][PubMed]
    [Google Scholar]
  27. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964[PubMed] [CrossRef]
    [Google Scholar]
  28. MacDonald S., Martin R., Bristow P. 1991; Characterization of an Ilarvirus associated with a necrotic shock reaction in blueberry. Phytopathology 81:210–214 [View Article]
    [Google Scholar]
  29. MacFarlane S. A., McGavin W. J. 2009; Genome activation by raspberry bushy dwarf virus coat protein. J Gen Virol 90:747–753 [View Article][PubMed]
    [Google Scholar]
  30. Martin R. R., Bristow P. 1988; A carlavirus associated with blueberry scorch disease. Phytopathology 78:1636–1640 [View Article]
    [Google Scholar]
  31. Martin R. R., Tzanetakis I. E., Caruso F. L., Polashock J. J. 2009; Emerging and reemerging virus diseases of blueberry and cranberry. Acta Hortic 810:299–304
    [Google Scholar]
  32. Martin R. R., Polashock J. J., Tzanetakis I. E. 2012; New and emerging viruses of blueberry and cranberry. Viruses 4:2831–2852 [View Article][PubMed]
    [Google Scholar]
  33. McGuffin L. J., Bryson K., Jones D. T. 2000; The PSIPRED protein structure prediction server. Bioinformatics 16:404–405 [View Article][PubMed]
    [Google Scholar]
  34. Melcher U. 1990; Similarities between putative transport proteins of plant viruses. J Gen Virol 71:1009–1018 [View Article][PubMed]
    [Google Scholar]
  35. Melcher U. 2000; The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81:257–266[PubMed]
    [Google Scholar]
  36. Melzer M. J., Sether D. M., Borth W. B., Hu J. S. 2012; Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms. Phytopathology 102:122–127 [View Article][PubMed]
    [Google Scholar]
  37. Moore J. 1994; The blueberry industry of North America. Acta Hortic 346:15–26
    [Google Scholar]
  38. Morozov S. Y., Solovyev A. G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366 [View Article][PubMed]
    [Google Scholar]
  39. Morris T. J., Dodds J. A. 1979; Isolation and analysis of double-stranded RNA from virus infected-plant and fungal tissue. Phytopathology 69:854–858 [View Article]
    [Google Scholar]
  40. Olsthoorn R. C. L., Mertens S., Brederode F. T., Bol J. F. 1999; A conformational switch at the 3′ end of a plant virus RNA regulates viral replication. EMBO J 18:4856–4864 [View Article][PubMed]
    [Google Scholar]
  41. Pleij C. W., Rietveld K., Bosch L. 1985; A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res 13:1717–1731 [View Article][PubMed]
    [Google Scholar]
  42. Rietveld K., Van Poelgeest R., Pleij C. W., Van Boom J. H., Bosch L. 1982; The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res 10:1929–1946 [View Article][PubMed]
    [Google Scholar]
  43. Rietveld K., Pleij C. W., Bosch L. 1983; Three-dimensional models of the tRNA-like 3′ termini of some plant viral RNAs. EMBO J 2:1079–1085[PubMed]
    [Google Scholar]
  44. Rochon D., Lommel S., Martelli G. P., Rubino L., Russo M. 2012; Tombusviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses pp. 1111–1138 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz. E. J. London: Elsevier;
    [Google Scholar]
  45. Rozanov M. N., Koonin E. V., Gorbalenya A. E. 1992; Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73:2129–2134 [View Article][PubMed]
    [Google Scholar]
  46. Rudinger-Thirion J., Olsthoorn R.-C., Giegé R., Barends S. 2006; Idiosyncratic behaviour of tRNA-like structures in translation of plant viral RNA genomes. J Mol Biol 355:873–878 [View Article][PubMed]
    [Google Scholar]
  47. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  48. Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I. 2009; ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123 [View Article][PubMed]
    [Google Scholar]
  49. Sit T. L., Vaewhongs A. A., Lommel S. A. 1998; RNA-mediated trans-activation of transcription from a viral RNA. Science 281:829–832 [View Article][PubMed]
    [Google Scholar]
  50. Strik B. 2006; Blueberry production and research trends in North America. Acta Hortic 715:173–184
    [Google Scholar]
  51. Sullivan M. L., Ahlquist P. 1999; A brome mosaic virus intergenic RNA3 replication signal functions with viral replication protein 1a to dramatically stabilize RNA in vivo. J Virol 73:2622–2632[PubMed]
    [Google Scholar]
  52. Swofford D. L., Olsen G. J., Waddell P. J., Hillis D. M. 1996; Phylogenetic inference. In Molecular Systematics pp. 407–514 Edited by Hillis D. M., Moritz C., Mable. B. K. Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  53. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  54. Tzanetakis I. E., Martin R. R. 2008; A new method for extraction of double-stranded RNA from plants. J Virol Methods 149:167–170 [View Article][PubMed]
    [Google Scholar]
  55. Tzanetakis I. E., Keller K. E., Martin R. R. 2005; The use of reverse transcriptase for efficient first- and second-strand cDNA synthesis from single- and double-stranded RNA templates. J Virol Methods 124:73–77 [View Article][PubMed]
    [Google Scholar]
  56. Wegener L. A., Punja Z. K., Martin R. R., Bernardy M. G., MacDonald L. 2006; Epidemiology and strain identification of Blueberry scorch virus on highbush blueberry in British Columbia. Can J Plant Pathol 28:250–262 [View Article]
    [Google Scholar]
  57. Whelan S., Goldman N. 2001; A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699 [View Article][PubMed]
    [Google Scholar]
  58. Zerbino D. R., Birney E. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.050393-0
Loading
/content/journal/jgv/10.1099/vir.0.050393-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error