Vertebrate attenuated West Nile virus mutants have differing effects on vector competence in mosquitoes Free

Abstract

Previous mutational analyses of naturally occurring West Nile virus (WNV) strains and engineered mutant WNV strains have identified locations in the viral genome that can have profound phenotypic effect on viral infectivity, temperature sensitivity and neuroinvasiveness. We chose six mutant WNV strains to evaluate for vector competence in the natural WNV vector , two of which contain multiple ablations of glycosylation sites in the envelope and NS1 proteins; three of which contain mutations in the NS4B protein and an attenuated natural bird isolate (Bird 1153) harbouring an NS4B mutation. Despite vertebrate attenuation, all NS4B mutant viruses displayed enhanced vector competence by . Non-glycosylated mutant viruses displayed decreased vector competence in mosquitoes, particularly when all three NS1 glycosylation sites were abolished. These results indicate the importance of both the NS4B protein and NS1 glycosylation in the transmission of WNV by a significant mosquito vector.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049833-0
2013-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/5/1069.html?itemId=/content/journal/jgv/10.1099/vir.0.049833-0&mimeType=html&fmt=ahah

References

  1. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [View Article][PubMed]
    [Google Scholar]
  2. Brault A. C., Langevin S. A., Ramey W. N., Fang Y., Beasley D. W., Barker C. M., Sanders T. A., Reisen W. K., Barrett A. D., Bowen R. A. 2011; Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas. Am J Trop Med Hyg 85:758–767 [View Article][PubMed]
    [Google Scholar]
  3. Davis C. T., Beasley D. W., Guzman H., Siirin M., Parsons R. E., Tesh R. B., Barrett A. D. 2004; Emergence of attenuated West Nile virus variants in Texas, 2003. Virology 330:342–350 [View Article][PubMed]
    [Google Scholar]
  4. Davis C. T., Ebel G. D., Lanciotti R. S., Brault A. C., Guzman H., Siirin M., Lambert A., Parsons R. E., Beasley D. W. other authors 2005; Phylogenetic analysis of North American West Nile virus isolates, 2001-2004: evidence for the emergence of a dominant genotype. Virology 342:252–265 [View Article][PubMed]
    [Google Scholar]
  5. Dupuis A. P. II, Marra P. P., Kramer L. D. 2003; Serologic evidence of West Nile virus transmission, Jamaica, West Indies. Emerg Infect Dis 9:860–863 [View Article][PubMed]
    [Google Scholar]
  6. Ebel G. D., Rochlin I., Longacker J., Kramer L. D. 2005; Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile Virus. J Med Entomol 42:838–843 [View Article][PubMed]
    [Google Scholar]
  7. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B. other authors 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337 [View Article][PubMed]
    [Google Scholar]
  8. Langevin S. A., Bowen R. A., Ramey W. N., Sanders T. A., Maharaj P. D., Fang Y., Cornelius J., Barker C. M., Reisen W. K. other authors 2011; Envelope and pre-membrane protein structural amino acid mutations mediate diminished avian growth and virulence of a Mexican West Nile virus isolate. J Gen Virol 92:2810–2820 [View Article][PubMed]
    [Google Scholar]
  9. May F. J., Li L., Davis C. T., Galbraith S. E., Barrett A. D. 2010; Multiple pathways to the attenuation of West Nile virus in south-east Texas in 2003. Virology 405:8–14 [View Article][PubMed]
    [Google Scholar]
  10. Molaei G., Andreadis T. G., Armstrong P. M., Anderson J. F., Vossbrinck C. R. 2006; Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 12:468–474 [View Article][PubMed]
    [Google Scholar]
  11. Moudy R. M., Meola M. A., Morin L. L., Ebel G. D., Kramer L. D. 2007; A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77:365–370[PubMed]
    [Google Scholar]
  12. Moudy R. M., Zhang B., Shi P. Y., Kramer L. D. 2009; West Nile virus envelope protein glycosylation is required for efficient viral transmission by Culex vectors. Virology 387:222–228 [View Article][PubMed]
    [Google Scholar]
  13. Murata R., Eshita Y., Maeda A., Maeda J., Akita S., Tanaka T., Yoshii K., Kariwa H., Umemura T., Takashima I. 2010; Glycosylation of the West Nile virus envelope protein increases in vivo and in vitro viral multiplication in birds. Am J Trop Med Hyg 82:696–704 [View Article][PubMed]
    [Google Scholar]
  14. Puig-Basagoiti F., Tilgner M., Bennett C. J., Zhou Y., Muñoz-Jordán J. L., García-Sastre A., Bernard K. A., Shi P. Y. 2007; A mouse cell-adapted NS4B mutation attenuates West Nile virus RNA synthesis. Virology 361:229–241 [View Article][PubMed]
    [Google Scholar]
  15. Thiemann T. C., Wheeler S. S., Barker C. M., Reisen W. K. 2011; Mosquito host selection varies seasonally with host availability and mosquito density. PLoS Negl Trop Dis 5:e1452 [View Article][PubMed]
    [Google Scholar]
  16. Totani M., Yoshii K., Kariwa H., Takashima I. 2011; Glycosylation of the envelope protein of West Nile virus affects its replication in chicks. Avian Dis 55:561–568 [View Article][PubMed]
    [Google Scholar]
  17. Turell M. J., Dohm D. J., Sardelis M. R., Oguinn M. L., Andreadis T. G., Blow J. A. 2005; An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42:57–62 [View Article][PubMed]
    [Google Scholar]
  18. Welte T., Xie G., Wicker J. A., Whiteman M. C., Li L., Rachamallu A., Barrett A., Wang T. 2011; Immune responses to an attenuated West Nile virus NS4B-P38G mutant strain. Vaccine 29:4853–4861 [View Article][PubMed]
    [Google Scholar]
  19. Whiteman M. C., Li L., Wicker J. A., Kinney R. M., Huang C., Beasley D. W., Chung K. M., Diamond M. S., Solomon T., Barrett A. D. 2010; Development and characterization of non-glycosylated E and NS1 mutant viruses as a potential candidate vaccine for West Nile virus. Vaccine 28:1075–1083 [View Article][PubMed]
    [Google Scholar]
  20. Whiteman M. C., Wicker J. A., Kinney R. M., Huang C. Y., Solomon T., Barrett A. D. 2011; Multiple amino acid changes at the first glycosylation motif NS1 protein of WNV are necessary for complete attenuation for mouse neuroinvasiveness. Vaccine 29:9702–9710 [CrossRef]
    [Google Scholar]
  21. Wicker J. A., Whiteman M. C., Beasley D. W., Davis C. T., Zhang S., Schneider B. S., Higgs S., Kinney R. M., Barrett A. D. 2006; A single amino acid substitution in the central portion of the West Nile virus NS4B protein confers a highly attenuated phenotype in mice. Virology 349:245–253 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049833-0
Loading
/content/journal/jgv/10.1099/vir.0.049833-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed