1887

Abstract

Rotaviruses (RVs) cause acute gastroenteritis in infants and young children, and are globally distributed. Within the infected host cell, RVs establish replication complexes in viroplasms (‘viral factories’) to which lipid droplet organelles are recruited. To further understand this recently discovered phenomenon, the lipidomes of RV-infected and uninfected MA104 cells were investigated. Cell lysates were subjected to equilibrium ultracentrifugation through iodixanol gradients. Fourteen different classes of lipids were differentiated by mass spectrometry. The concentrations of virtually all lipids were elevated in RV-infected cells. Fractions of low density (1.11–1.15 g ml), in which peaks of the RV dsRNA genome and lipid droplet- and viroplasm-associated proteins were observed, contained increased amounts of lipids typically found concentrated in the cellular organelle lipid droplets, confirming the close interaction of lipid droplets with viroplasms. A decrease in the ratio of the amounts of surface to internal components of lipid droplets upon RV infection suggested that the lipid droplet–viroplasm complexes became enlarged.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049635-0
2013-07-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/7/1576.html?itemId=/content/journal/jgv/10.1099/vir.0.049635-0&mimeType=html&fmt=ahah

References

  1. Agnello V., Ãbel G., Elfahal M., Knight G. B., Zhang Q. X.. ( 1999; ). Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. . Proc Natl Acad Sci U S A 96:, 12766–12771. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andersson L., Boström P., Ericson J., Rutberg M., Magnusson B., Marchesan D., Ruiz M., Asp L., Huang P.. & other authors ( 2006; ). PLD1 and ERK2 regulate cytosolic lipid droplet formation. . J Cell Sci 119:, 2246–2257. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arnoldi F., Campagna M., Eichwald C., Desselberger U., Burrone O. R.. ( 2007; ). Interaction of rotavirus polymerase VP1 with nonstructural protein NSP5 is stronger than that with NSP2. . J Virol 81:, 2128–2137. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barba G., Harper F., Harada T., Kohara M., Goulinet S., Matsuura Y., Eder G., Schaff Zs., Chapman M. J.. & other authors ( 1997; ). Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. . Proc Natl Acad Sci U S A 94:, 1200–1205. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bartz R., Li W. H., Venables B., Zehmer J. K., Roth M. R., Welti R., Anderson R. G. W., Liu P., Chapman K. D.. ( 2007; ). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. . J Lipid Res 48:, 837–847. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bican P., Cohen J., Charpilienne A., Scherrer R.. ( 1982; ). Purification and characterization of bovine rotavirus cores. . J Virol 43:, 1113–1117.[PubMed]
    [Google Scholar]
  7. Blanchette-Mackie E. J., Scow R. O.. ( 1983; ). Movement of lipolytic products to mitochondria in brown adipose tissue of young rats: an electron microscope study. . J Lipid Res 24:, 229–244.[PubMed]
    [Google Scholar]
  8. Bollinger C. R., Teichgräber V., Gulbins E.. ( 2005; ). Ceramide-enriched membrane domains. . Biochim Biophys Acta 1746:, 284–294. [CrossRef] [PubMed]
    [Google Scholar]
  9. Brügger B., Glass B., Haberkant P., Leibrecht I., Wieland F. T., Kräusslich H. G.. ( 2006; ). The HIV lipidome: a raft with an unusual composition. . Proc Natl Acad Sci U S A 103:, 2641–2646. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen D. Y., Ramig R. F.. ( 1992; ). Determinants of rotavirus stability and density during CsCl purification. . Virology 186:, 228–237. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cheung W., Gill M., Esposito A., Kaminski C. F., Courousse N., Chwetzoff S., Trugnan G., Keshavan N., Lever A., Desselberger U.. ( 2010; ). Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. . J Virol 84:, 6782–6798. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ducharme N. A., Bickel P. E.. ( 2008; ). Lipid droplets in lipogenesis and lipolysis. . Endocrinology 149:, 942–949. [CrossRef] [PubMed]
    [Google Scholar]
  13. Eichwald C., Rodriguez J. F., Burrone O. R.. ( 2004; ). Characterization of rotavirus NSP2/NSP5 interactions and the dynamics of viroplasm formation. . J Gen Virol 85:, 625–634. [CrossRef] [PubMed]
    [Google Scholar]
  14. Estes M. K., Kapikian A. Z.. ( 2007; ). Rotaviruses. . In Fields Virology, , 5th edn., pp. 1917–1974. Edited by Knipe D. M. et al.. Philadelphia:: Kluwer Health/Lippincott, Williams and Wilkins;.
    [Google Scholar]
  15. Fabbretti E., Afrikanova I., Vascotto F., Burrone O. R.. ( 1999; ). Two non-structural rotavirus proteins, NSP2 and NSP5, form viroplasm-like structures in vivo . . J Gen Virol 80:, 333–339.[PubMed]
    [Google Scholar]
  16. Fei W., Shui G., Zhang Y., Krahmer N., Ferguson C., Kapterian T. S., Lin R. C., Dawes I. W., Brown A. J.. & other authors ( 2011; ). A role for phosphatidic acid in the formation of “supersized” lipid droplets. . PLoS Genet 7:, e1002201. [CrossRef] [PubMed]
    [Google Scholar]
  17. Folch J., Lees M., Sloane Stanley G. H.. ( 1957; ). A simple method for the isolation and purification of total lipides from animal tissues. . J Biol Chem 226:, 497–509.[PubMed]
    [Google Scholar]
  18. Grassmé H., Riehle A., Wilker B., Gulbins E.. ( 2005; ). Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. . J Biol Chem 280:, 26256–26262. [CrossRef] [PubMed]
    [Google Scholar]
  19. Guo Y., Cordes K. R., Farese R. V. Jr, Walther T. C.. ( 2009; ). Lipid droplets at a glance. . J Cell Sci 122:, 749–752. [CrossRef] [PubMed]
    [Google Scholar]
  20. Helmberger-Jones M., Patton J. T.. ( 1986; ). Characterization of subviral particles in cells infected with simian rotavirus SA11. . Virology 155:, 655–665. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hijikata M., Shimizu Y. K., Kato H., Iwamoto A., Shih J. W., Alter H. J., Purcell R. H., Yoshikura H.. ( 1993; ). Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. . J Virol 67:, 1953–1958.[PubMed]
    [Google Scholar]
  22. Huang H., Schroeder F., Zeng C., Estes M. K., Schoer J. K., Ball J. M.. ( 2001; ). Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4. . Biochemistry 40:, 4169–4180. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jan J. T., Chatterjee S., Griffin D. E.. ( 2000; ). Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. . J Virol 74:, 6425–6432. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kalashnikova M., Fadeeva E.. ( 2006; ). Ultrastructural study of liver cells from rooks living in ecologically unfavorable areas. . Biol Bull 33:, 99–106. [CrossRef]
    [Google Scholar]
  25. Kalica A. R., Sereno M. M., Wyatt R. G., Mebus C. A., Chanock R. M., Kapikian A. Z.. ( 1978; ). Comparison of human and animal rotavirus strains by gel electrophoresis of viral RNA. . Virology 87:, 247–255. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kalvodova L., Sampaio J. L., Cordo S., Ejsing C. S., Shevchenko A., Simons K.. ( 2009; ). The lipidomes of vesicular stomatitis virus, Semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. . J Virol 83:, 7996–8003. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kanto T., Hayashi N., Takehara T., Hagiwara H., Mita E., Naito M., Kasahara A., Fusamoto H., Kamada T.. ( 1994; ). Buoyant density of hepatitis C virus recovered from infected hosts: two different features in sucrose equilibrium density-gradient centrifugation related to degree of liver inflammation. . Hepatology 19:, 296–302. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kim Y., Chang K. O.. ( 2011; ). Inhibitory effects of bile acids and synthetic farnesoid X receptor agonists on rotavirus replication. . J Virol 85:, 12570–12577. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kuerschner L., Moessinger C., Thiele C.. ( 2008; ). Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. . Traffic 9:, 338–352. [CrossRef] [PubMed]
    [Google Scholar]
  30. Liebisch G., Binder M., Schifferer R., Langmann T., Scz B., Schmitz G.. ( 2006; ). High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). . Biochim Biophys Acta 1761:, 121–128. [CrossRef] [PubMed]
    [Google Scholar]
  31. Martin S., Parton R. G.. ( 2006; ). Lipid droplets: a unified view of a dynamic organelle. . Nat Rev Mol Cell Biol 7:, 373–378. [CrossRef] [PubMed]
    [Google Scholar]
  32. Miyanari Y., Atsuzawa K., Usuda N., Watashi K., Hishiki T., Zayas M., Bartenschlager R., Wakita T., Hijikata M., Shimotohno K.. ( 2007; ). The lipid droplet is an important organelle for hepatitis C virus production. . Nat Cell Biol 9:, 1089–1097. [CrossRef] [PubMed]
    [Google Scholar]
  33. Monazahian M., Kippenberger S., Müller A., Seitz H., Böhme I., Grethe S., Thomssen R.. ( 2000; ). Binding of human lipoproteins (low, very low, high density lipoproteins) to recombinant envelope proteins of hepatitis C virus. . Med Microbiol Immunol (Berl) 188:, 177–184. [CrossRef] [PubMed]
    [Google Scholar]
  34. Nielsen S. U., Bassendine M. F., Burt A. D., Martin C., Pumeechockchai W., Toms G. L.. ( 2006; ). Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. . J Virol 80:, 2418–2428. [CrossRef] [PubMed]
    [Google Scholar]
  35. Novikoff A. B., Novikoff P. M., Rosen O. M., Rubin C. S.. ( 1980; ). Organelle relationships in cultured 3T3-L1 preadipocytes. . J Cell Biol 87:, 180–196. [CrossRef] [PubMed]
    [Google Scholar]
  36. Pollak J. K., Munn E. A.. ( 1970; ). The isolation by isopycnic density-gradient centrifugation of two mitochondrial populations from livers of embryonic and fed and starved adult rats. . Biochem J 117:, 913–919.[PubMed]
    [Google Scholar]
  37. Rainero E., Caswell P. T., Muller P. A. J., Grindlay J., McCaffrey M. W., Zhang Q., Wakelam M. J. O., Vousden K. H., Graziani A., Norman J. C.. ( 2012; ). Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration. . J Cell Biol 196:, 277–295. [CrossRef] [PubMed]
    [Google Scholar]
  38. Samsa M. M., Mondotte J. A., Iglesias N. G., Assunção-Miranda I., Barbosa-Lima G., Da Poian A. T., Bozza P. T., Gamarnik A. V.. ( 2009; ). Dengue virus capsid protein usurps lipid droplets for viral particle formation. . PLoS Pathog 5:, e1000632. [CrossRef] [PubMed]
    [Google Scholar]
  39. Stemberger B. H., Walsh R. M., Patton S.. ( 1984; ). Morphometric evaluation of lipid droplet associations with secretory vesicles, mitochondria and other components in the lactating cell. . Cell Tissue Res 236:, 471–475. [CrossRef] [PubMed]
    [Google Scholar]
  40. Sturmey R. G., O’Toole P. J., Leese H. J.. ( 2006; ). Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. . Reproduction 132:, 829–837. [CrossRef] [PubMed]
    [Google Scholar]
  41. Suzuki M., Shinohara Y., Ohsaki Y., Fujimoto T.. ( 2011; ). Lipid droplets: size matters. . J Electron Microsc (Tokyo) 60: (Suppl 1), S101–S116. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tam J. S., Szymanski M. T., Middleton P. J., Petric M.. ( 1976; ). Studies on the particles of infantile gastroenteritis virus (orbivirus group). . Intervirology 7:, 181–191.[PubMed]
    [Google Scholar]
  43. Tate J. E., Burton A. H., Boschi-Pinto C., Steele A. D., Duque J., Parashar U. D..WHO-coordinated Global Rotavirus Surveillance Network ( 2012; ). 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. . Lancet Infect Dis 12:, 136–141. [CrossRef] [PubMed]
    [Google Scholar]
  44. Tauchi-Sato K., Ozeki S., Houjou T., Taguchi R., Fujimoto T.. ( 2002; ). The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. . J Biol Chem 277:, 44507–44512. [CrossRef] [PubMed]
    [Google Scholar]
  45. Walther T. C., Farese R. V. Jr. ( 2012; ). Lipid droplets and cellular lipid metabolism. . Annu Rev Biochem 81:, 687–714. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wolins N. E., Rubin B., Brasaemle D. L.. ( 2001; ). TIP47 associates with lipid droplets. . J Biol Chem 276:, 5101–5108. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049635-0
Loading
/content/journal/jgv/10.1099/vir.0.049635-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error