1887

Abstract

Cotton leaf curl disease (CLCuD) is a serious disease of cotton which has characteristic symptoms, the most unusual of which is the formation of leaf-like enations on the undersides of leaves. The disease is caused by whitefly-transmitted geminiviruses (family , genus ) in association with specific, symptom-modulating satellites (betasatellites) and an evolutionarily distinct group of satellite-like molecules known as alphasatellites. CLCuD occurs across Africa as well as in Pakistan and north-western India. Over the past 25 years, Pakistan and India have experienced two epidemics of the disease, the most recent of which involved a virus and satellite that are resistance breaking. Loss of this conventional host–plant resistance, which saved the cotton growers from ruin in the late 1990s, leaves farmers with only relatively poor host plant tolerance to counter the extensive losses the disease causes. There has always been the fear that CLCuD could spread from the relatively limited geographical range it encompasses at present to other cotton-growing areas of the world where, although the disease is not present, the environmental conditions are suitable for its establishment and the whitefly vector occurs. Unfortunately recent events have shown this fear to be well founded, with CLCuD making its first appearance in China. Here, we outline recent advances made in understanding the molecular biology of the components of the disease complex, their interactions with host plants, as well as efforts being made to control CLCuD.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049627-0
2013-04-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/695.html?itemId=/content/journal/jgv/10.1099/vir.0.049627-0&mimeType=html&fmt=ahah

References

  1. Ahmed M. Z., De Barro P. J., Greeff J. M., Ren S.-X., Naveed M., Qiu B.-L.. ( 2011;). Genetic identity of the Bemisia tabaci species complex and association with high cotton leaf curl disease (CLCuD) incidence in Pakistan. . Pest Manag Sci 67:, 307–317. [CrossRef][PubMed]
    [Google Scholar]
  2. Amin I., Mansoor S., Amrao L., Hussain M., Irum S., Zafar Y., Bull S. E., Briddon R. W.. ( 2006;). Mobilisation into cotton and spread of a recombinant cotton leaf curl disease satellite. . Arch Virol 151:, 2055–2065. [CrossRef][PubMed]
    [Google Scholar]
  3. Amin I., Hussain K., Akbergenov R., Yadav J. S., Qazi J., Mansoor S., Hohn T., Fauquet C. M., Briddon R. W.. ( 2011a;). Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. . Mol Plant Microbe Interact 24:, 973–983. [CrossRef][PubMed]
    [Google Scholar]
  4. Amin I., Patil B. L., Briddon R. W., Mansoor S., Fauquet C. M.. ( 2011b;). A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. . Virol J 8:, 143. [CrossRef][PubMed]
    [Google Scholar]
  5. Amin I., Patil B. L., Briddon R. W., Mansoor S., Fauquet C. M.. ( 2011c;). Comparison of phenotypes produced in response to transient expression of genes encoded by four distinct begomoviruses in Nicotiana benthamiana and their correlation with the levels of developmental miRNAs. . Virol J 8:, 238. [CrossRef][PubMed]
    [Google Scholar]
  6. Amrao L., Akhter S., Tahir M. N., Amin I., Briddon R. W., Mansoor S.. ( 2010a;). Cotton leaf curl disease in Sindh province of Pakistan is associated with recombinant begomovirus components. . Virus Res 153:, 161–165. [CrossRef][PubMed]
    [Google Scholar]
  7. Amrao L., Amin I., Shahid M. S., Briddon R. W., Mansoor S.. ( 2010b;). Cotton leaf curl disease in resistant cotton is associated with a single begomovirus that lacks an intact transcriptional activator protein. . Virus Res 152:, 153–163. [CrossRef][PubMed]
    [Google Scholar]
  8. Angell S. M., Davies C., Baulcombe D. C.. ( 1996;). Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. . Virology 216:, 197–201. [CrossRef][PubMed]
    [Google Scholar]
  9. Anonymous (2011). Record production in 2011/2012 as a response to record prices. ICAC Press Release, March 1, 2011.
  10. Asad S., Haris W. A. A., Bashir A., Zafar Y., Malik K. A., Malik N. N., Lichtenstein C. P.. ( 2003;). Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. . Arch Virol 148:, 2341–2352. [CrossRef][PubMed]
    [Google Scholar]
  11. Baliji S., Sunter J., Sunter G.. ( 2007;). Transcriptional analysis of complementary sense genes in Spinach curly top virus and functional role of C2 in pathogenesis. . Mol Plant Microbe Interact 20:, 194–206. [CrossRef][PubMed]
    [Google Scholar]
  12. Bartel D. P.. ( 2004;). MicroRNAs: genomics, biogenesis, mechanism, and function. . Cell 116:, 281–297. [CrossRef][PubMed]
    [Google Scholar]
  13. Bayne E. H., Rakitina D. V., Morozov S. Y., Baulcombe D. C.. ( 2005;). Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. . Plant J 44:, 471–482. [CrossRef][PubMed]
    [Google Scholar]
  14. Beck D. L., Van Dolleweerd C. J., Lough T. J., Balmori E., Voot D. M., Andersen M. T., O’Brien I. E. W., Forster R. L. S.. ( 1994;). Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block. . Proc Natl Acad Sci U S A 91:, 10310–10314. [CrossRef][PubMed]
    [Google Scholar]
  15. Bedford I. D., Briddon R. W., Brown J. K., Rosell R. C., Markham P. G.. ( 1994;). Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. . Ann Appl Biol 125:, 311–325. [CrossRef]
    [Google Scholar]
  16. Bivalkar-Mehla S., Vakharia J., Mehla R., Abreha M., Kanwar J. R., Tikoo A., Chauhan A.. ( 2011;). Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. . Virus Res 155:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  17. Briddon R. W., Markham P. G.. ( 2000;). Cotton leaf curl virus disease. . Virus Res 71:, 151–159. [CrossRef][PubMed]
    [Google Scholar]
  18. Briddon R. W., Stanley J.. ( 2006;). Subviral agents associated with plant single-stranded DNA viruses. . Virology 344:, 198–210. [CrossRef][PubMed]
    [Google Scholar]
  19. Briddon R. W., Mansoor S., Bedford I. D., Pinner M. S., Saunders K., Stanley J., Zafar Y., Malik K. A., Markham P. G.. ( 2001;). Identification of DNA components required for induction of cotton leaf curl disease. . Virology 285:, 234–243. [CrossRef][PubMed]
    [Google Scholar]
  20. Briddon R. W., Bull S. E., Amin I., Idris A. M., Mansoor S., Bedford I. D., Dhawan P., Rishi N., Siwatch S. S.. & other authors ( 2003;). Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. . Virology 312:, 106–121. [CrossRef][PubMed]
    [Google Scholar]
  21. Briddon R. W., Bull S. E., Amin I., Mansoor S., Bedford I. D., Rishi N., Siwatch S. S., Zafar Y., Abdel-Salam A. M., Markham P. G.. ( 2004;). Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. . Virology 324:, 462–474. [CrossRef][PubMed]
    [Google Scholar]
  22. Brown J. K., Fauquet C. M., Briddon R. W., Zerbini M., Moriones E., Navas-Castillo J.. ( 2012;). Geminiviridae. . In Virus Taxonomy - Ninth Report of the International Committee on Taxonomy of Viruses, pp. 351–373. Edited by King A. M. Q, Adams M. J., Carstens E. B., Lefkowitz E. J... London:: Associated Press, Elsevier;.
    [Google Scholar]
  23. Cai J. H., Xie K., Lin L., Qin B. X., Chen B. S., Meng J. R., Liu Y. L.. ( 2010;). Cotton leaf curl Multan virus newly reported to be associated with cotton leaf curl disease in China. . Plant Pathol 59:, 794–795. [CrossRef]
    [Google Scholar]
  24. Cantrell R.. ( 2005;). The world of cotton. . Pflanzenschutz-Nachrichten Bayer 58:, 77–92.
    [Google Scholar]
  25. Chapman E. J., Prokhnevsky A. I., Gopinath K., Dolja V. V., Carrington J. C.. ( 2004;). Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. . Genes Dev 18:, 1179–1186. [CrossRef][PubMed]
    [Google Scholar]
  26. Chellappan P., Vanitharani R., Fauquet C. M.. ( 2005;). MicroRNA-binding viral protein interferes with Arabidopsis development. . Proc Natl Acad Sci U S A 102:, 10381–10386. [CrossRef][PubMed]
    [Google Scholar]
  27. Cheng X., Wang X., Wu J., Briddon R. W., Zhou X.. ( 2011;). βC1 encoded by tomato yellow leaf curl China betasatellite forms multimeric complexes in vitro and in vivo. . Virology 409:, 156–162. [CrossRef][PubMed]
    [Google Scholar]
  28. Chowda Reddy R. V., Muniyappa V., Colvin J., Seal S.. ( 2005;). A new begomovirus isolated from Gossypium barbadense in Southern India. . Plant Pathol 54:, 570. [CrossRef]
    [Google Scholar]
  29. Collin S., Fernández-Lobato M., Gooding P. S., Mullineaux P. M., Fenoll C.. ( 1996;). The two nonstructural proteins from wheat dwarf virus involved in viral gene expression and replication are retinoblastoma-binding proteins. . Virology 219:, 324–329. [CrossRef][PubMed]
    [Google Scholar]
  30. Cui X., Li G., Wang D., Hu D., Zhou X.. ( 2005;). A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. . J Virol 79:, 10764–10775. [CrossRef][PubMed]
    [Google Scholar]
  31. De Barro P. J., Liu S.-S., Boykin L. M., Dinsdale A. B.. ( 2011;). Bemisia tabaci: a statement of species status. . Annu Rev Entomol 56:, 1–19. [CrossRef][PubMed]
    [Google Scholar]
  32. Eini O., Dogra S., Selth L. A., Dry I. B., Randles J. W., Rezaian M. A.. ( 2009;). Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA β satellite. . Mol Plant Microbe Interact 22:, 737–746. [CrossRef][PubMed]
    [Google Scholar]
  33. Farooq A., Farooq J., Mahmood A., Shakeel A., Rehman A., Batool A., Riaz M., Shahid M. T. H., Mehboob S.. ( 2011;). An overview of cotton leaf curl virus disease (CLCuD) a serious threat to cotton productivity. . Aust J Crop Sci 5:, 1823–1831.
    [Google Scholar]
  34. Farquharson, C. O. (1912). Report of Mycologist. Annual Report of the Agricultural Department of Nigeria.
  35. Gambley C.. ( 2010;). Cotton leaf curl disease. . In Farm Biosecurity Manual for the Cotton Industry, pp. 36–37. Deakin, Australia:: Plant Health Australia;.
    [Google Scholar]
  36. Hammond S. M., Bernstein E., Beach D., Hannon G. J.. ( 2000;). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. . Nature 404:, 293–296. [CrossRef][PubMed]
    [Google Scholar]
  37. Hashmi J. A., Zafar Y., Arshad M., Mansoor S., Asad S.. ( 2011;). Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. . Virus Genes 42:, 286–296. [CrossRef][PubMed]
    [Google Scholar]
  38. Idris A. M., Brown J. K.. ( 2002;). Molecular analysis of Cotton leaf curl virus-Sudan reveals an evolutionary history of recombination. . Virus Genes 24:, 249–256. [CrossRef][PubMed]
    [Google Scholar]
  39. Idris A. M., Brown J. K.. ( 2004;). Cotton leaf crumple virus is a distinct Western Hemisphere begomovirus species with complex evolutionary relationships indicative of recombination and reassortment. . Phytopathology 94:, 1068–1074. [CrossRef][PubMed]
    [Google Scholar]
  40. Idris A. M., Abdel-Salam A., Brown J. K.. ( 2006;). Introduction of the New World Squash leaf curl virus to squash (Cucurbita pepo) in Egypt: A potential threat to important food crops. . Plant Dis 90:, 1262. [CrossRef]
    [Google Scholar]
  41. Idris A. M., Shahid M. S., Briddon R. W., Khan A. J., Zhu J.-K., Brown J. K.. ( 2011;). An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. . J Gen Virol 92:, 706–717. [CrossRef][PubMed]
    [Google Scholar]
  42. Ilyas M., Amin I., Mansoor S., Briddon R. W., Saeed M.. ( 2011;). Challenges for transgenic resistance against geminiviruses. . In Emerging Geminiviral Diseases and their Management, pp. 1–35. Edited by Sharma P., Gaur R. K., Ikegami M... New York:: Nova Science Publishers Inc;.
    [Google Scholar]
  43. Kalinina N. O., Rakitina D. V., Solovyev A. G., Schiemann J., Morozov S. Y.. ( 2002;). RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. . Virology 296:, 321–329. [CrossRef][PubMed]
    [Google Scholar]
  44. Kasschau K. D., Xie Z., Allen E., Llave C., Chapman E. J., Krizan K. A., Carrington J. C.. ( 2003;). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. . Dev Cell 4:, 205–217. [CrossRef][PubMed]
    [Google Scholar]
  45. Kheyr-Pour A., Bendahmane M., Matzeit V., Accotto G. P., Crespi S., Gronenborn B.. ( 1991;). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. . Nucleic Acids Res 19:, 6763–6769. [CrossRef][PubMed]
    [Google Scholar]
  46. Kirthi N., Priyadarshini C. G. P., Sharma P., Maiya S. P., Hemalatha V., Sivaraman P., Dhawan P., Rishi N., Savithri H. S.. ( 2004;). Genetic variability of begomoviruses associated with cotton leaf curl disease originating from India. . Arch Virol 149:, 2047–2057.[PubMed]
    [Google Scholar]
  47. Kumar P., Usha R., Zrachya A., Levy Y., Spanov H., Gafni Y.. ( 2006;). Protein-protein interactions and nuclear trafficking of coat protein and βC1 protein associated with Bhendi yellow vein mosaic disease. . Virus Res 122:, 127–136. [CrossRef][PubMed]
    [Google Scholar]
  48. Lefeuvre P., Martin D. P., Harkins G., Lemey P., Gray A. J. A., Meredith S., Lakay F., Monjane A., Lett J.-M.. & other authors ( 2010;). The spread of tomato yellow leaf curl virus from the Middle East to the world. . PLoS Pathog 6:, e1001164. [CrossRef][PubMed]
    [Google Scholar]
  49. Lefeuvre P., Harkins G. W., Lett J.-M., Briddon R. W., Chase M. W., Moury B., Martin D. P.. ( 2011;). Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. . PLoS ONE 6:, e19193. [CrossRef][PubMed]
    [Google Scholar]
  50. Leke W. N., Kvarnheden A., Ngane E. B., Titanji V. P., Brown J. K.. ( 2011;). Molecular characterization of a new begomovirus and divergent alphasatellite from tomato in Cameroon. . Arch Virol 156:, 925–928. [CrossRef][PubMed]
    [Google Scholar]
  51. MacLean D., Elina N., Havecker E. R., Heimstaedt S. B., Studholme D. J., Baulcombe D. C.. ( 2010;). Evidence for large complex networks of plant short silencing RNAs. . PLoS ONE 5:, e9901. [CrossRef][PubMed]
    [Google Scholar]
  52. Mansoor S., Bedford I., Pinner M. S., Stanley J., Markham P. G.. ( 1993;). A whitefly-transmitted geminivirus associated with cotton leaf curl disease in Pakistan. . Pak J Bot 25:, 105–107.
    [Google Scholar]
  53. Mansoor S., Khan S. H., Bashir A., Saeed M., Zafar Y., Malik K. A., Briddon R. W., Stanley J., Markham P. G.. ( 1999;). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. . Virology 259:, 190–199. [CrossRef][PubMed]
    [Google Scholar]
  54. Mansoor S., Amin I., Iram S., Hussain M., Zafar Y., Malik K. A., Briddon R. W.. ( 2003a;). Breakdown of resistance in cotton to cotton leaf curl disease in Pakistan. . Plant Pathol 52:, 784. [CrossRef]
    [Google Scholar]
  55. Mansoor S., Briddon R. W., Bull S. E., Bedford I. D., Bashir A., Hussain M., Saeed M., Zafar Y., Malik K. A.. & other authors ( 2003b;). Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β. . Arch Virol 148:, 1969–1986. [CrossRef][PubMed]
    [Google Scholar]
  56. Mansoor S., Amrao L., Amin I., Briddon R. W., Malik K. A., Zafar Y.. ( 2006;). First report of cotton leaf curl disease in central and southern Sindh province in Pakistan. . Plant Dis 90:, 826. [CrossRef]
    [Google Scholar]
  57. Mansoor S., Amin I., Briddon R. W.. ( 2011;). Geminiviral diseases of cotton. . In Stress Physiology in Cotton. Edited by Oosterhuis D. M... Cordova, Tennessee, USA:: The Cotton Foundation;.
    [Google Scholar]
  58. Mao M. J., He Z. F., Yu H., Li H. P.. ( 2008;). [Molecular characterization of cotton leaf Curl Multan virus and its satellite DNA that infects Hibiscus rosa-sinensis.]. . Bing Du Xue Bao 24:, 64–68 (in Chinese).[PubMed]
    [Google Scholar]
  59. Nahid N., Amin I., Mansoor S., Rybicki E. P., van der Walt E., Briddon R. W.. ( 2008;). Two dicot-infecting mastreviruses (family Geminiviridae) occur in Pakistan. . Arch Virol 153:, 1441–1451. [CrossRef][PubMed]
    [Google Scholar]
  60. Nawaz-ul-Rehman M. S., Mansoor S., Briddon R. W., Fauquet C. M.. ( 2009;). Maintenance of an old world betasatellite by a new world helper begomovirus and possible rapid adaptation of the betasatellite. . J Virol 83:, 9347–9355. [CrossRef][PubMed]
    [Google Scholar]
  61. Nawaz-ul-Rehman M. S., Nahid N., Mansoor S., Briddon R. W., Fauquet C. M.. ( 2010;). Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. . Virology 405:, 300–308. [CrossRef][PubMed]
    [Google Scholar]
  62. Nawaz-ul-Rehman M. S., Briddon R. W., Fauquet C. M.. ( 2012;). A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. . PLoS ONE 7:, e40050. [CrossRef][PubMed]
    [Google Scholar]
  63. Obbard D. J., Gordon K. H. J., Buck A. H., Jiggins F. M.. ( 2009;). The evolution of RNAi as a defence against viruses and transposable elements. . Philos Trans R Soc Lond B Biol Sci 364:, 99–115. [CrossRef][PubMed]
    [Google Scholar]
  64. Panhwar G. R., Panhwar G. A., Soomro A. W., Magsi M. R., Leghari A. B.. ( 2001;). Survey of cotton leaf curl virus (CLCV) in Sindh. . J Biol Sci 1:, 134–135. [CrossRef]
    [Google Scholar]
  65. Paprotka T., Metzler V., Jeske H.. ( 2010;). The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. . Virology 404:, 148–157. [CrossRef][PubMed]
    [Google Scholar]
  66. Patil B. L., Fauquet C. M.. ( 2009;). Cassava mosaic geminiviruses: actual knowledge and perspectives. . Mol Plant Pathol 10:, 685–701. [CrossRef][PubMed]
    [Google Scholar]
  67. Paul S., Roy A., Ghosh R., Das S., Chaudhuri S., Ghosh S. K.. ( 2008;). Molecular characterization and sequence variability of betasatellites associated with leaf curl disease of kenaf (Hibiscus cannabinus L.) from different geographical locations of India. . Acta Virol 52:, 251–256.[PubMed]
    [Google Scholar]
  68. Qazi J., Amin I., Mansoor S., Iqbal M. J., Briddon R. W.. ( 2007;). Contribution of the satellite encoded gene betaC1 to cotton leaf curl disease symptoms. . Virus Res 128:, 135–139. [CrossRef][PubMed]
    [Google Scholar]
  69. Rahman M., Zafar Y.. ( 2007;). Registration of NIBGE-115 cotton. . J Plant Reg 1:, 51–52. [CrossRef]
    [Google Scholar]
  70. Rahman M., Hussain D., Malik T. A., Zafar Y.. ( 2005;). Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. . Plant Pathol 54:, 764–772. [CrossRef]
    [Google Scholar]
  71. Rajagopalan P. A., Naik A., Katturi P., Kurulekar M., Kankanallu R. S., Anandalakshmi R.. ( 2012;). Dominance of resistance-breaking cotton leaf curl Burewala virus (CLCuBuV) in northwestern India. . Arch Virol 157:, 855–868. [CrossRef][PubMed]
    [Google Scholar]
  72. Romay G., Chirinos D., Geraud-Pouey F., Desbiez C.. ( 2010;). Association of an atypical alphasatellite with a bipartite New World begomovirus. . Arch Virol 155:, 1843–1847. [CrossRef][PubMed]
    [Google Scholar]
  73. Ru P., Xu L., Ma H., Huang H.. ( 2006;). Plant fertility defects induced by the enhanced expression of microRNA167. . Cell Res 16:, 457–465. [CrossRef][PubMed]
    [Google Scholar]
  74. Saeed M.. ( 2010a;). Tomato leaf curl New Delhi virus DNA A component and Cotton leaf curl Multan betasatellite can cause mild transient symptoms in cotton. . Acta Virol 54:, 317–318. [CrossRef][PubMed]
    [Google Scholar]
  75. Saeed M.. ( 2010b;). Tomato leaf curl virus and Cotton leaf curl Multan betasatellite can cause mild transient symptoms in cotton. . Australas Plant Dis Notes 5:, 58–60. [CrossRef]
    [Google Scholar]
  76. Saeed M., Behjatnia S. A. A., Mansoor S., Zafar Y., Hasnain S., Rezaian M. A.. ( 2005;). A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. . Mol Plant Microbe Interact 18:, 7–14. [CrossRef][PubMed]
    [Google Scholar]
  77. Saeed M., Zafar Y., Randles J. W., Rezaian M. A.. ( 2007;). A monopartite begomovirus-associated DNA β satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. . J Gen Virol 88:, 2881–2889. [CrossRef][PubMed]
    [Google Scholar]
  78. Saeed M., Mansoor S., Rezaian M. A., Briddon R. W., Randles J. W.. ( 2008;). Satellite DNA β overrides the pathogenicity phenotype of the C4 gene of tomato leaf curl virus but does not compensate for loss of function of the coat protein and V2 genes. . Arch Virol 153:, 1367–1372. [CrossRef][PubMed]
    [Google Scholar]
  79. Saunders K., Stanley J.. ( 1999;). A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. . Virology 264:, 142–152. [CrossRef][PubMed]
    [Google Scholar]
  80. Saunders K., Bedford I. D., Briddon R. W., Markham P. G., Wong S. M., Stanley J.. ( 2000;). A unique virus complex causes Ageratum yellow vein disease. . Proc Natl Acad Sci U S A 97:, 6890–6895. [CrossRef][PubMed]
    [Google Scholar]
  81. Saunders K., Bedford I. D., Stanley J.. ( 2002;). Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. . J Gen Virol 83:, 907–913.[PubMed]
    [Google Scholar]
  82. Saunders K., Briddon R. W., Stanley J.. ( 2008;). Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. . J Gen Virol 89:, 3165–3172. [CrossRef][PubMed]
    [Google Scholar]
  83. Shahid M. S., Mansoor S., Briddon R. W.. ( 2007;). Complete nucleotide sequences of cotton leaf curl Rajasthan virus and its associated DNA β molecule infecting tomato. . Arch Virol 152:, 2131–2134. [CrossRef][PubMed]
    [Google Scholar]
  84. Shepherd D. N., Martin D. P., van der Walt E., Dent K., Varsani A., Rybicki E. P.. ( 2010;). Maize streak virus: an old and complex ‘emerging’ pathogen. . Mol Plant Pathol 11:, 1–12. [CrossRef]
    [Google Scholar]
  85. Stanley J.. ( 1983;). Infectivity of the cloned geminivirus genome requires sequences from both DNAs. . Nature 305:, 643–645. [CrossRef]
    [Google Scholar]
  86. Sunilkumar G., Campbell L. M., Puckhaber L., Stipanovic R. D., Rathore K. S.. ( 2006;). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. . Proc Natl Acad Sci U S A 103:, 18054–18059. [CrossRef][PubMed]
    [Google Scholar]
  87. Tahir M. N., Amin I., Briddon R. W., Mansoor S.. ( 2011;). The merging of two dynasties–identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. . PLoS ONE 6:, e20366. [CrossRef][PubMed]
    [Google Scholar]
  88. Trinks D., Rajeswaran R., Shivaprasad P. V., Akbergenov R., Oakeley E. J., Veluthambi K., Hohn T., Pooggin M. M.. ( 2005;). Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. . J Virol 79:, 2517–2527. [CrossRef][PubMed]
    [Google Scholar]
  89. Vanderschuren H., Stupak M., Fütterer J., Gruissem W., Zhang P.. ( 2007;). Engineering resistance to geminiviruses – review and perspectives. . Plant Biotechnol J 5:, 207–220. [CrossRef][PubMed]
    [Google Scholar]
  90. Voinnet O., Pinto Y. M., Baulcombe D. C.. ( 1999;). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. . Proc Natl Acad Sci U S A 96:, 14147–14152. [CrossRef][PubMed]
    [Google Scholar]
  91. Voinnet O., Lederer C., Baulcombe D. C.. ( 2000;). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. . Cell 103:, 157–167. [CrossRef][PubMed]
    [Google Scholar]
  92. Wendel J. F., Cronn R. C.. ( 2003;). Polyploidy and the evolutionary history of cotton. . Adv Agron 78:, 139–186.
    [Google Scholar]
  93. Xie K., Cai J. H., Hu D. M., Wei X., Jia Q., Qin B. X., Chen B. S., Meng J. R., Liu Y. L.. ( 2012;). First report of okra leaf curl disease in China. . J Plant Pathol (in press)
    [Google Scholar]
  94. Yang Y., Ding B., Baulcombe D. C., Verchot J.. ( 2000;). Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. . Mol Plant Microbe Interact 13:, 599–605. [CrossRef][PubMed]
    [Google Scholar]
  95. Yang J.-Y., Iwasaki M., Machida C., Machida Y., Zhou X., Chua N.-H.. ( 2008;). βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. . Genes Dev 22:, 2564–2577. [CrossRef][PubMed]
    [Google Scholar]
  96. Zaffalon V., Mukherjee S. K., Reddy V. S., Thompson J. R., Tepfer M.. ( 2012;). A survey of geminiviruses and associated satellite DNAs in the cotton-growing areas of northwestern India. . Arch Virol 157:, 483–495. [CrossRef][PubMed]
    [Google Scholar]
  97. Zhang T., Luan J.-B., Qi J.-F., Huang C.-J., Li M., Zhou X.-P., Liu S.-S.. ( 2012;). Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. . Mol Ecol 21:, 1294–1304. [CrossRef][PubMed]
    [Google Scholar]
  98. Zhou X., Liu Y., Robinson D. J., Harrison B. D.. ( 1998;). Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra. . J Gen Virol 79:, 915–923.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049627-0
Loading
/content/journal/jgv/10.1099/vir.0.049627-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error