1887

Abstract

Vaccinia virus (VACV) has two infectious forms called intracellular mature virus and extracellular enveloped virus (EEV). Two of the seven viral proteins in the EEV outer envelope, A33 and A34, are type II membrane glycoproteins that each interact with another EEV protein called B5; however, evidence for direct A33–A34 interaction is lacking. The localization and stability of A34 is affected by B5 and here data are presented showing that A34 is also affected by A33. In the absence of A33, just as without B5, the level, localization and glycosylation profile of A34 was altered. However, the glycosylation profile of A34 without A33 is different to that observed in the absence of B5, and A34 accumulates in the Golgi apparatus rather than in the endoplasmic reticulum. Thus, A34 requires more than one other EEV protein for its processing and cellular transport.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049486-0
2013-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/720.html?itemId=/content/journal/jgv/10.1099/vir.0.049486-0&mimeType=html&fmt=ahah

References

  1. Blasco R., Cole N. B., Moss B.. ( 1991;). Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. . J Virol 65:, 4598–4608.[PubMed]
    [Google Scholar]
  2. Blasco R., Sisler J. R., Moss B.. ( 1993;). Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. . J Virol 67:, 3319–3325.[PubMed]
    [Google Scholar]
  3. Breiman A., Smith G. L.. ( 2010;). Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein. . J Gen Virol 91:, 1823–1827. [CrossRef][PubMed]
    [Google Scholar]
  4. Chan W. M., Ward B. M.. ( 2010;). There is an A33-dependent mechanism for the incorporation of B5-GFP into vaccinia virus extracellular enveloped virions. . Virology 402:, 83–93. [CrossRef][PubMed]
    [Google Scholar]
  5. Condit R. C., Moussatche N., Traktman P.. ( 2006;). In a nutshell: structure and assembly of the vaccinia virion. . Adv Virus Res 66:, 31–124. [CrossRef][PubMed]
    [Google Scholar]
  6. Dales S., Siminovitch L.. ( 1961;). The development of vaccinia virus in Earle’s L strain cells as examined by electron microscopy. . J Biophys Biochem Cytol 10:, 475–503. [CrossRef][PubMed]
    [Google Scholar]
  7. DeHaven B. C., Girgis N. M., Xiao Y., Hudson P. N., Olson V. A., Damon I. K., Isaacs S. N.. ( 2010;). Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. . J Virol 84:, 11245–11254. [CrossRef][PubMed]
    [Google Scholar]
  8. DeHaven B. C., Gupta K., Isaacs S. N.. ( 2011;). The vaccinia virus A56 protein: a multifunctional transmembrane glycoprotein that anchors two secreted viral proteins. . J Gen Virol 92:, 1971–1980. [CrossRef][PubMed]
    [Google Scholar]
  9. Doceul V., Hollinshead M., van der Linden L., Smith G. L.. ( 2010;). Repulsion of superinfecting virions: a mechanism for rapid virus spread. . Science 327:, 873–876. [CrossRef][PubMed]
    [Google Scholar]
  10. Duncan S. A., Smith G. L.. ( 1992;). Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. . J Virol 66:, 1610–1621.[PubMed]
    [Google Scholar]
  11. Earley A. K., Chan W. M., Ward B. M.. ( 2008;). The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. . J Virol 82:, 2161–2169. [CrossRef][PubMed]
    [Google Scholar]
  12. Engelstad M., Howard S. T., Smith G. L.. ( 1992;). A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. . Virology 188:, 801–810. [CrossRef][PubMed]
    [Google Scholar]
  13. Grosenbach D. W., Hansen S. G., Hruby D. E.. ( 2000;). Identification and analysis of vaccinia virus palmitylproteins. . Virology 275:, 193–206. [CrossRef][PubMed]
    [Google Scholar]
  14. Gubser C., Smith G. L.. ( 2002;). The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. . J Gen Virol 83:, 855–872.[PubMed]
    [Google Scholar]
  15. Gubser C., Hué S., Kellam P., Smith G. L.. ( 2004;). Poxvirus genomes: a phylogenetic analysis. . J Gen Virol 85:, 105–117. [CrossRef][PubMed]
    [Google Scholar]
  16. Hollinshead M., Vanderplasschen A., Smith G. L., Vaux D. J.. ( 1999;). Vaccinia virus intracellular mature virions contain only one lipid membrane. . J Virol 73:, 1503–1517.[PubMed]
    [Google Scholar]
  17. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B.. ( 1992;). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. . J Virol 66:, 7217–7224.[PubMed]
    [Google Scholar]
  18. Law M., Hollinshead R., Smith G. L.. ( 2002;). Antibody-sensitive and antibody-resistant cell-to-cell spread by vaccinia virus: role of the A33R protein in antibody-resistant spread. . J Gen Virol 83:, 209–222.[PubMed]
    [Google Scholar]
  19. Lorenzo M. M., Galindo I., Griffiths G., Blasco R.. ( 2000;). Intracellular localization of vaccinia virus extracellular enveloped virus envelope proteins individually expressed using a Semliki Forest virus replicon. . J Virol 74:, 10535–10550. [CrossRef][PubMed]
    [Google Scholar]
  20. McIntosh A. A., Smith G. L.. ( 1996;). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. . J Virol 70:, 272–281.[PubMed]
    [Google Scholar]
  21. Payne L. G.. ( 1992;). Characterization of vaccinia virus glycoproteins by monoclonal antibody precipitation. . Virology 187:, 251–260. [CrossRef][PubMed]
    [Google Scholar]
  22. Perdiguero B., Blasco R.. ( 2006;). Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. . J Virol 80:, 8763–8777. [CrossRef][PubMed]
    [Google Scholar]
  23. Perdiguero B., Lorenzo M. M., Blasco R.. ( 2008;). Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope. . J Virol 82:, 2150–2160. [CrossRef][PubMed]
    [Google Scholar]
  24. Roberts K. L., Smith G. L.. ( 2008;). Vaccinia virus morphogenesis and dissemination. . Trends Microbiol 16:, 472–479. [CrossRef][PubMed]
    [Google Scholar]
  25. Roberts K. L., Breiman A., Carter G. C., Ewles H. A., Hollinshead M., Law M., Smith G. L.. ( 2009;). Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. . J Gen Virol 90:, 1582–1591. [CrossRef][PubMed]
    [Google Scholar]
  26. Roper R. L., Payne L. G., Moss B.. ( 1996;). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. . J Virol 70:, 3753–3762.[PubMed]
    [Google Scholar]
  27. Roper R. L., Wolffe E. J., Weisberg A., Moss B.. ( 1998;). The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. . J Virol 72:, 4192–4204.[PubMed]
    [Google Scholar]
  28. Röttger S., Frischknecht F., Reckmann I., Smith G. L., Way M.. ( 1999;). Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. . J Virol 73:, 2863–2875.[PubMed]
    [Google Scholar]
  29. Sanderson C. M., Frischknecht F., Way M., Hollinshead M., Smith G. L.. ( 1998;). Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell–cell fusion. . J Gen Virol 79:, 1415–1425.[PubMed]
    [Google Scholar]
  30. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G.. ( 1994;). Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. . J Virol 68:, 130–147.[PubMed]
    [Google Scholar]
  31. Shida H.. ( 1986;). Nucleotide sequence of the vaccinia virus hemagglutinin gene. . Virology 150:, 451–462. [CrossRef][PubMed]
    [Google Scholar]
  32. Smith G. L., Vanderplasschen A., Law M.. ( 2002;). The formation and function of extracellular enveloped vaccinia virus. . J Gen Virol 83:, 2915–2931.[PubMed]
    [Google Scholar]
  33. Su H. P., Singh K., Gittis A. G., Garboczi D. N.. ( 2010;). The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. . J Virol 84:, 2502–2510. [CrossRef][PubMed]
    [Google Scholar]
  34. Turner P. C., Moyer R. W.. ( 2006;). The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. . Virology 347:, 88–99. [CrossRef][PubMed]
    [Google Scholar]
  35. van Eijl H., Hollinshead M., Smith G. L.. ( 2000;). The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. . Virology 271:, 26–36. [CrossRef][PubMed]
    [Google Scholar]
  36. Wagenaar T. R., Moss B.. ( 2007;). Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. . J Virol 81:, 6286–6293. [CrossRef][PubMed]
    [Google Scholar]
  37. Wolffe E. J., Isaacs S. N., Moss B.. ( 1993;). Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. . J Virol 67:, 4732–4741.[PubMed]
    [Google Scholar]
  38. Wolffe E. J., Katz E., Weisberg A., Moss B.. ( 1997;). The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. . J Virol 71:, 3904–3915.[PubMed]
    [Google Scholar]
  39. Wolffe E. J., Weisberg A. S., Moss B.. ( 2001;). The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. . J Virol 75:, 303–310. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049486-0
Loading
/content/journal/jgv/10.1099/vir.0.049486-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error