1887

Abstract

Crimean–Congo hemorrhagic fever virus (CCHFV), which is widely distributed in parts of Asia, Africa and Europe, often causes fatal viral infections in humans. However, its evolutionary features are still unclear. In this study, a total of 22 global CCHFV strains with complete genome segments were analysed. Three medium (M) segment reassortants and two small (S) segment reassortants were newly identified. According to Bayesian analysis of the S, M and large (L) segment datasets with and without reassortants, inclusion of reassortants was approved to bias Bayesian analysis of the S and L segments, but not the M segment. The mucin domain of the M segment had no effect on evolutionary rate estimates, but had slight effects on the time to the most recent common ancestor. Selection pressure analysis suggested that CCHFV was under strong purifying selection regardless of the S, M and L segments, and that the L segment was also shaped by positive selection. Bayesian analysis in this study indicated the evolutionary features of CCHFV, which were helpful in investigating the molecular evolution, CCHF surveillance and the pathogenicity of CCHFV and other viruses in the family .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049379-0
2013-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/4/843.html?itemId=/content/journal/jgv/10.1099/vir.0.049379-0&mimeType=html&fmt=ahah

References

  1. Anagnostou V. , Papa A. . ( 2009; ). Evolution of Crimean–Congo hemorrhagic fever virus. . Infect Genet Evol 9:, 948–954. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aradaib I. E. , Erickson B. R. , Karsany M. S. , Khristova M. L. , Elageb R. M. , Mohamed M. E. H. , Nichol S. T. . ( 2011; ). Multiple Crimean–Congo hemorrhagic fever virus strains are associated with disease outbreaks in Sudan, 2008-–2009. . PLoS Negl Trop Dis 5:, e1159. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bird B. H. , Githinji J. W. K. , Macharia J. M. , Kasiiti J. L. , Muriithi R. M. , Gacheru S. G. , Musaa J. O. , Towner J. S. , Reeder S. A. . & other authors ( 2008; ). Multiple virus lineages sharing recent common ancestry were associated with a Large Rift Valley fever outbreak among livestock in Kenya during 2006–2007. . J Virol 82:, 11152–11166. [CrossRef] [PubMed]
    [Google Scholar]
  4. Burt F. J. , Swanepoel R. . ( 2005; ). Molecular epidemiology of African and Asian Crimean–Congo haemorrhagic fever isolates. . Epidemiol Infect 133:, 659–666. [CrossRef] [PubMed]
    [Google Scholar]
  5. Burt F. J. , Paweska J. T. , Ashkettle B. , Swanepoel R. . ( 2009; ). Genetic relationship in southern African Crimean–Congo haemorrhagic fever virus isolates: evidence for occurrence of reassortment. . Epidemiol Infect 137:, 1302–1308. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carroll S. A. , Bird B. H. , Rollin P. E. , Nichol S. T. . ( 2010; ). Ancient common ancestry of Crimean–Congo hemorrhagic fever virus. . Mol Phylogenet Evol 55:, 1103–1110. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chare E. R. , Gould E. A. , Holmes E. C. . ( 2003; ). Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. . J Gen Virol 84:, 2691–2703. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chisholm K. , Dueger E. , Fahmy N. T. , Samaha H. A. , Zayed A. , Abdel-Dayem M. , Villinski J. T. . ( 2012; ). Crimean–Congo hemorrhagic fever virus in ticks from imported livestock, Egypt. . Emerg Infect Dis 18:, 181–182. [CrossRef] [PubMed]
    [Google Scholar]
  9. Deyde V. M. , Khristova M. L. , Rollin P. E. , Ksiazek T. G. , Nichol S. T. . ( 2006; ). Crimean–Congo hemorrhagic fever virus genomics and global diversity. . J Virol 80:, 8834–8842. [CrossRef] [PubMed]
    [Google Scholar]
  10. Drummond A. J. , Rambaut A. . ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ergönül O. , Celikbaş A. , Dokuzoguz B. , Eren S. , Baykam N. , Esener H. . ( 2004; ). Characteristics of patients with Crimean–Congo hemorrhagic fever in a recent outbreak in Turkey and impact of oral ribavirin therapy. . Clin Infect Dis 39:, 284–287. [CrossRef] [PubMed]
    [Google Scholar]
  12. Griot C. , Gonzalez-Scarano F. , Nathanson N. . ( 1993; ). Molecular determinants of the virulence and infectivity of California serogroup bunyaviruses. . Annu Rev Microbiol 47:, 117–138. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gunes T. , Poyraz O. , Vatansever Z. . ( 2011; ). Crimean–Congo hemorrhagic fever virus in ticks collected from humans, livestock, and picnic sites in the hyperendemic region of Turkey. . Vector Borne Zoonotic Dis 11:, 1411–1416. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hewson R. , Gmyl A. , Gmyl L. , Smirnova S. E. , Karganova G. , Jamil B. , Hasan R. , Chamberlain J. , Clegg C. . ( 2004; ). Evidence of segment reassortment in Crimean–Congo haemorrhagic fever virus. . J Gen Virol 85:, 3059–3070. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hoogstraal H. . ( 1979; ). The epidemiology of tick-borne Crimean–Congo hemorrhagic fever in Asia, Europe, and Africa. . J Med Entomol 15:, 307–417.[PubMed] [CrossRef]
    [Google Scholar]
  16. Kaye A. C. , Moyer J. W. , Parks E. J. , Carbone I. , Cubeta M. A. . ( 2011; ). Population genetic analysis of Tomato spotted wilt virus on peanut in North Carolina and Virginia. . Phytopathology 101:, 147–153. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lukashev A. N. . ( 2005; ). Evidence for recombination in Crimean–Congo hemorrhagic fever virus. . J Gen Virol 86:, 2333–2338. [CrossRef] [PubMed]
    [Google Scholar]
  18. Pond S. L. , Frost S. D. . ( 2005; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. . Bioinformatics 21:, 2531–2533. [CrossRef] [PubMed]
    [Google Scholar]
  19. Rodriguez L. L. , Maupin G. O. , Ksiazek T. G. , Rollin P. E. , Khan A. S. , Schwarz T. F. , Lofts R. S. , Smith J. F. , Noor A. M. . & other authors ( 1997; ). Molecular investigation of a multisource outbreak of Crimean–Congo hemorrhagic fever in the United Arab Emirates. . Am J Trop Med Hyg 57:, 512–518.[PubMed]
    [Google Scholar]
  20. Sanchez A. J. , Vincent M. J. , Nichol S. T. . ( 2002; ). Characterization of the glycoproteins of Crimean–Congo hemorrhagic fever virus. . J Virol 76:, 7263–7275. [CrossRef] [PubMed]
    [Google Scholar]
  21. Schmaljohn C. S. , Hooper J. W. . ( 2001; ). Bunyaviridae: the viruses and their replication. . In Fields Virology, , 4th edn., pp. 1447–1472. Edited by Knipe D. M. , Howley P. M. . . Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  22. Schmidt H. A. , Strimmer K. , Vingron M. , von Haeseler A. . ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. . Bioinformatics 18:, 502–504. [CrossRef] [PubMed]
    [Google Scholar]
  23. Shepherd A. J. , Swanepoel R. , Leman P. A. , Shepherd S. P. . ( 1987; ). Field and laboratory investigation of Crimean–Congo haemorrhagic fever virus (Nairovirus, family Bunyaviridae) infection in birds. . Trans R Soc Trop Med Hyg 81:, 1004–1007. [CrossRef] [PubMed]
    [Google Scholar]
  24. Shepherd A. J. , Swanepoel R. , Shepherd S. P. , Leman P. A. , Mathee O. . ( 1991; ). Viraemic transmission of Crimean–Congo haemorrhagic fever virus to ticks. . Epidemiol Infect 106:, 373–382. [CrossRef] [PubMed]
    [Google Scholar]
  25. Swanepoel R. , Leman P. A. , Burt F. J. , Jardine J. , Verwoerd D. J. , Capua I. , Brückner G. K. , Burger W. P. . ( 1998; ). Experimental infection of ostriches with Crimean–Congo haemorrhagic fever virus. . Epidemiol Infect 121:, 427–432. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tang Q. . ( 2006; ). [ Research status and progress of Crimean–Congo hemorrhagic fever. ]. Chin J Exp Clin Virol 20:, 86–89 (in Chinese).
    [Google Scholar]
  28. Woelk C. H. , Holmes E. C. . ( 2002; ). Reduced positive selection in vector-borne RNA viruses. . Mol Biol Evol 19:, 2333–2336. [CrossRef] [PubMed]
    [Google Scholar]
  29. Xiao X. , Feng Y. , Zhu Z. , Dimitrov D. S. . ( 2011; ). Identification of a putative Crimean–Congo hemorrhagic fever virus entry factor. . Biochem Biophys Res Commun 411:, 253–258. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049379-0
Loading
/content/journal/jgv/10.1099/vir.0.049379-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error