1887

Abstract

Adenovirus (AdV) is thought to follow a sequential assembly pathway similar to that observed in dsDNA bacteriophages and herpesviruses. First, empty capsids are assembled, and then the genome is packaged through a ring-like structure, referred to as a portal, located at a unique vertex. In human AdV serotype 5 (HAdV5), the IVa2 protein initiates specific recognition of viral genome by associating with the viral packaging domain located between nucleotides 220 and 400 of the genome. IVa2 is located at a unique vertex on mature capsids and plays an essential role during genome packaging, most likely by acting as a DNA packaging ATPase. In this study, we demonstrated interactions among IVa2, 33K and DNA-binding protein (DBP) in virus-infected cells by cross-linking of HAdV5-infected cells followed by Western blot, and co-immunoprecipitation of IVa2, 33K and DBP from nuclear extracts of HAdV5-infected cells. Confocal microscopy demonstrated co-localization of IVa2, 33K and DBP in virus-infected cells and also in cells transfected with IVa2, 33K and DBP genes. Immunogold electron microscopy of purified HAdV5 showed the presence of IVa2, 33K or DBP at a single site on the virus particles. Our results provide indirect evidence that IVa2, 33K and DBP may form a complex at a unique vertex on viral capsids and cooperate in genome packaging.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049346-0
2013-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/6/1325.html?itemId=/content/journal/jgv/10.1099/vir.0.049346-0&mimeType=html&fmt=ahah

References

  1. Ali H., LeRoy G., Bridge G., Flint S. J.. ( 2007;). The adenovirus L4 33-kilodalton protein binds to intragenic sequences of the major late promoter required for late phase-specific stimulation of transcription. . J Virol 81:, 1327–1338. [CrossRef][PubMed]
    [Google Scholar]
  2. Bangari D. S., Mittal S. K.. ( 2004;). Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. . Virus Res 105:, 127–136. [CrossRef][PubMed]
    [Google Scholar]
  3. Bosher J., Dawson A., Hay R. T.. ( 1992;). Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. . J Virol 66:, 3140–3150.[PubMed]
    [Google Scholar]
  4. Christensen J. B., Byrd S. A., Walker A. K., Strahler J. R., Andrews P. C., Imperiale M. J.. ( 2008;). Presence of the adenovirus IVa2 protein at a single vertex of the mature virion. . J Virol 82:, 9086–9093. [CrossRef][PubMed]
    [Google Scholar]
  5. Daniell E.. ( 1976;). Genome structure of incomplete particles of adenovirus. . J Virol 19:, 685–708.[PubMed]
    [Google Scholar]
  6. Dittmer A., Drach J. C., Townsend L. B., Fischer A., Bogner E.. ( 2005;). Interaction of the putative human cytomegalovirus portal protein pUL104 with the large terminase subunit pUL56 and its inhibition by benzimidazole-D-ribonucleosides. . J Virol 79:, 14660–14667. [CrossRef][PubMed]
    [Google Scholar]
  7. Edvardsson B., Everitt E., Jörnvall H., Prage L., Philipson L.. ( 1976;). Intermediates in adenovirus assembly. . J Virol 19:, 533–547.[PubMed]
    [Google Scholar]
  8. Ewing S. G., Byrd S. A., Christensen J. B., Tyler R. E., Imperiale M. J.. ( 2007;). Ternary complex formation on the adenovirus packaging sequence by the IVa2 and L4 22-kilodalton proteins. . J Virol 81:, 12450–12457. [CrossRef][PubMed]
    [Google Scholar]
  9. Fu C. Y., Prevelige P. E. Jr. ( 2009;). In vitro incorporation of the phage Phi29 connector complex. . Virology 394:, 149–153. [CrossRef][PubMed]
    [Google Scholar]
  10. Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P.. ( 1973;). In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. . J Natl Cancer Inst 51:, 1417–1423.[PubMed]
    [Google Scholar]
  11. Gonzalez R. A., Flint S. J.. ( 2002;). Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. . J Virol 76:, 4507–4519. [CrossRef][PubMed]
    [Google Scholar]
  12. Gräble M., Hearing P.. ( 1990;). Adenovirus type 5 packaging domain is composed of a repeated element that is functionally redundant. . J Virol 64:, 2047–2056.[PubMed]
    [Google Scholar]
  13. Graham F. L., Prevec L.. ( 1991;). Manipulation of Adenovirus Vectors. . In Gene Transfer and Expression Protocols, , 7th edn., pp. 109–128. Edited by Murray E. J... New York, NY:: Humana Press;. [CrossRef]
    [Google Scholar]
  14. Graham F. L., Smiley J., Russell W. C., Nairn R.. ( 1977;). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. . J Gen Virol 36:, 59–72. [CrossRef][PubMed]
    [Google Scholar]
  15. Gustin K. E., Imperiale M. J.. ( 1998;). Encapsidation of viral DNA requires the adenovirus L1 52/55-kilodalton protein. . J Virol 72:, 7860–7870.[PubMed]
    [Google Scholar]
  16. Gustin K. E., Lutz P., Imperiale M. J.. ( 1996;). Interaction of the adenovirus L1 52/55-kilodalton protein with the IVa2 gene product during infection. . J Virol 70:, 6463–6467.[PubMed]
    [Google Scholar]
  17. Harada J. N., Shevchenko A., Shevchenko A., Pallas D. C., Berk A. J.. ( 2002;). Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. . J Virol 76:, 9194–9206. [CrossRef][PubMed]
    [Google Scholar]
  18. Hearing P., Samulski R. J., Wishart W. L., Shenk T.. ( 1987;). Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. . J Virol 61:, 2555–2558.[PubMed]
    [Google Scholar]
  19. Horwitz M. S.. ( 2001;). Adenoviruses. . In Fields Virology, , 4th edn., pp. 2301–2326. Edited by Fields B. N., Knipe D. M., Howley P. M... Philadelphia, PA, USA:: Lippincott Williams and Wilkins;.
    [Google Scholar]
  20. Ishibashi M., Maizel J. V. Jr. ( 1974;). The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions. . Virology 57:, 409–424. [CrossRef][PubMed]
    [Google Scholar]
  21. Khittoo G., Weber J. M.. ( 1981;). The nature of the DNA associated with incomplete particles of adenovirus type 2. . J Gen Virol 54:, 343–355. [CrossRef][PubMed]
    [Google Scholar]
  22. Kitchingman G. R.. ( 1995;). Mutations in the adenovirus-encoded single-stranded DNA binding protein that result in altered accumulation of early and late viral RNAs. . Virology 212:, 91–101. [CrossRef][PubMed]
    [Google Scholar]
  23. Kosturko L. D., Sharnick S. V., Tibbetts C.. ( 1982;). Polar encapsidation of adenovirus DNA: cloning and DNA sequence of the left end of adenovirus type 3. . J Virol 43:, 1132–1137.[PubMed]
    [Google Scholar]
  24. Lutz P., Puvion-Dutilleul F., Lutz Y., Kedinger C.. ( 1996;). Nucleoplasmic and nucleolar distribution of the adenovirus IVa2 gene product. . J Virol 70:, 3449–3460.[PubMed]
    [Google Scholar]
  25. Newcomb W. W., Juhas R. M., Thomsen D. R., Homa F. L., Burch A. D., Weller S. K., Brown J. C.. ( 2001;). The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. . J Virol 75:, 10923–10932. [CrossRef][PubMed]
    [Google Scholar]
  26. Nicolas J. C., Sarnow P., Girard M., Levine A. J.. ( 1983;). Host range temperature-conditional mutants in the adenovirus DNA binding protein are defective in the assembly of infectious virus. . Virology 126:, 228–239. [CrossRef][PubMed]
    [Google Scholar]
  27. Ostapchuk P., Hearing P.. ( 2008;). Adenovirus IVa2 protein binds ATP. . J Virol 82:, 10290–10294. [CrossRef][PubMed]
    [Google Scholar]
  28. Ostapchuk P., Yang J., Auffarth E., Hearing P.. ( 2005;). Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. . J Virol 79:, 2831–2838. [CrossRef][PubMed]
    [Google Scholar]
  29. Ostapchuk P., Anderson M. E., Chandrasekhar S., Hearing P.. ( 2006;). The L4 22-kilodalton protein plays a role in packaging of the adenovirus genome. . J Virol 80:, 6973–6981. [CrossRef][PubMed]
    [Google Scholar]
  30. Ostapchuk P., Almond M., Hearing P.. ( 2011;). Characterization of Empty adenovirus particles assembled in the absence of a functional adenovirus IVa2 protein. . J Virol 85:, 5524–5531. [CrossRef][PubMed]
    [Google Scholar]
  31. Pardo-Mateos A., Young C. S.. ( 2004;). A 40 kDa isoform of the type 5 adenovirus IVa2 protein is sufficient for virus viability. . Virology 324:, 151–164. [CrossRef][PubMed]
    [Google Scholar]
  32. Parks R. J., Chen L., Anton M., Sankar U., Rudnicki M. A., Graham F. L.. ( 1996;). A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. . Proc Natl Acad Sci U S A 93:, 13565–13570. [CrossRef][PubMed]
    [Google Scholar]
  33. Perez-Romero P., Tyler R. E., Abend J. R., Dus M., Imperiale M. J.. ( 2005;). Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro. . J Virol 79:, 2366–2374. [CrossRef][PubMed]
    [Google Scholar]
  34. Puvion-Dutilleul F., Puvion E.. ( 1990;). Replicating single-stranded adenovirus type 5 DNA molecules accumulate within well-delimited intranuclear areas of lytically infected HeLa cells. . Eur J Cell Biol 52:, 379–388.[PubMed]
    [Google Scholar]
  35. Rao V. B., Feiss M.. ( 2008;). The bacteriophage DNA packaging motor. . Annu Rev Genet 42:, 647–681. [CrossRef][PubMed]
    [Google Scholar]
  36. Reich N. C., Sarnow P., Duprey E., Levine A. J.. ( 1983;). Monoclonal antibodies which recognize native and denatured forms of the adenovirus DNA-binding protein. . Virology 128:, 480–484. [CrossRef][PubMed]
    [Google Scholar]
  37. Schmid S. I., Hearing P.. ( 1997;). Bipartite structure and functional independence of adenovirus type 5 packaging elements. . J Virol 71:, 3375–3384.[PubMed]
    [Google Scholar]
  38. Stuiver M. H., van der Vliet P. C.. ( 1990;). Adenovirus DNA-binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. . J Virol 64:, 379–386.[PubMed]
    [Google Scholar]
  39. Sun S., Rao V. B., Rossmann M. G.. ( 2010;). Genome packaging in viruses. . Curr Opin Struct Biol 20:, 114–120. [CrossRef][PubMed]
    [Google Scholar]
  40. van Olphen A. L., Tikoo S. K., Mittal S. K.. ( 2002;). Characterization of bovine adenovirus type 3 E1 proteins and isolation of E1-expressing cell lines. . Virology 295:, 108–118. [CrossRef][PubMed]
    [Google Scholar]
  41. Winter N., D’Halluin J. C.. ( 1991;). Regulation of the biosynthesis of subgroup C adenovirus protein IVa2. . J Virol 65:, 5250–5259.[PubMed]
    [Google Scholar]
  42. Zhang W., Imperiale M. J.. ( 2003;). Requirement of the adenovirus IVa2 protein for virus assembly. . J Virol 77:, 3586–3594. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049346-0
Loading
/content/journal/jgv/10.1099/vir.0.049346-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error