1887

Abstract

Endogenous retroviruses (ERVs) are remnants of retroviral germ line infections and have been identified in all mammals investigated so far. Although the majority of ERVs are degenerated, some mammalian species, such as mice and pigs, carry replication-competent ERVs capable of forming infectious viral particles. In mice, ERVs are silenced by DNA methylation and histone modifications and some exogenous retroviruses were shown to be transcriptionally repressed after integration by a primer-binding site (PBS) targeting mechanism. However, epigenetic repression of porcine ERVs (PERVs) has remained largely unexplored so far. In this study, we screened the pig genome for PERVs using , a tool for detection of ERVs, and investigated various aspects of epigenetic repression of three unrelated PERV families. We found that these PERV families are differentially up- or downregulated upon chemical inhibition of DNA methylation and histone deacetylation in cultured porcine cells. Furthermore, chromatin immunoprecipitation analysis revealed repressive histone methylation marks at PERV loci in primary porcine embryonic germ cells and immortalized embryonic kidney cells. PERV elements belonging to the PERV-γ1 family, which is the only known PERV family that has remained active up to the present, were marked by significantly higher levels of histone methylations than PERV-γ2 and PERV-β3 proviruses. Finally, we tested three PERV-associated PBS sequences for repression activity in murine and porcine cells using retroviral transduction experiments and showed that none of these PBS sequences induced immediate transcriptional silencing in the tested primary porcine cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049288-0
2013-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/5/960.html?itemId=/content/journal/jgv/10.1099/vir.0.049288-0&mimeType=html&fmt=ahah

References

  1. Barklis E., Mulligan R. C., Jaenisch R. 1986; Chromosomal position or virus mutation permits retrovirus expression in embryonal carcinoma cells. Cell 47:391–399 [View Article][PubMed]
    [Google Scholar]
  2. Besmer P., Olshevsky U., Baltimore D., Dolberg D., Fan H. 1979; Virus-like 30S RNA in mouse cells. J Virol 29:1168–1176[PubMed]
    [Google Scholar]
  3. Boneva R. S., Folks T. M. 2004; Xenotransplantation and risks of zoonotic infections. Ann Med 36:504–517 [View Article][PubMed]
    [Google Scholar]
  4. Brevini T. A., Antonini S., Pennarossa G., Gandolfi F. 2008; Recent progress in embryonic stem cell research and its application in domestic species. Reprod Domest Anim 43:Suppl. 2193–199 [View Article][PubMed]
    [Google Scholar]
  5. Brunmeir R., Lagger S., Simboeck E., Sawicka A., Egger G., Hagelkruys A., Zhang Y., Matthias P., Miller W. J., Seiser C. 2010; Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet 6:e1000927 [View Article][PubMed]
    [Google Scholar]
  6. Czauderna F., Fischer N., Boller K., Kurth R., Tönjes R. R. 2000; Establishment and characterization of molecular clones of porcine endogenous retroviruses replicating on human cells. J Virol 74:4028–4038 [View Article][PubMed]
    [Google Scholar]
  7. Ellinghaus D., Kurtz S., Willhoeft U. 2008; LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18 [View Article][PubMed]
    [Google Scholar]
  8. Ericsson T., Oldmixon B., Blomberg J., Rosa M., Patience C., Andersson G. 2001; Identification of novel porcine endogenous betaretrovirus sequences in miniature swine. J Virol 75:2765–2770 [View Article][PubMed]
    [Google Scholar]
  9. Fujimura T., Miyagawa S., Takahagi Y., Shigehisa T., Murakami H. 2008; Prevalence of porcine endogenous retroviruses in domestic, miniature, and genetically modified pigs in Japan. Transplant Proc 40:594–595 [View Article][PubMed]
    [Google Scholar]
  10. Haas D. L., Lutzko C., Logan A. C., Cho G. J., Skelton D., Jin Yu X., Pepper K. A., Kohn D. B. 2003; The Moloney murine leukemia virus repressor binding site represses expression in murine and human hematopoietic stem cells. J Virol 77:9439–9450 [View Article][PubMed]
    [Google Scholar]
  11. Huda A., Mariño-Ramírez L., Jordan I. K. 2010; Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mob DNA 1:2 [View Article][PubMed]
    [Google Scholar]
  12. Hughes J. F., Coffin J. M. 2001; Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 29:487–489 [View Article][PubMed]
    [Google Scholar]
  13. Hughes J. F., Coffin J. M. 2004; Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci U S A 101:1668–1672 [View Article][PubMed]
    [Google Scholar]
  14. Jiang Y. N., Wu C. Y., Huang C. Y., Chu H. P., Ke M. W., Kung M. S., Li K. Y., Wang C. H., Li S. H.other authors 2008; Interpopulation and intrapopulation maternal lineage genetics of the Lanyu pig (Sus scrofa) by analysis of mitochondrial cytochrome b and control region sequences. J Anim Sci 86:2461–2470 [View Article][PubMed]
    [Google Scholar]
  15. Jungmann A., Tönjes R. R. 2008; Retrotransposition: another obstacle for xenotransplantation?. Transplant Proc 40:596–597 [View Article][PubMed]
    [Google Scholar]
  16. Keefer C. L., Pant D., Blomberg L., Talbot N. C. 2007; Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci 98:147–168 [View Article][PubMed]
    [Google Scholar]
  17. Kijas J. M., Andersson L. 2001; A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J Mol Evol 52:302–308[PubMed]
    [Google Scholar]
  18. Klymiuk N., Müller M., Brem G., Aigner B. 2002; Characterization of porcine endogenous retrovirus gamma pro-pol nucleotide sequences. J Virol 76:11738–11743 [View Article][PubMed]
    [Google Scholar]
  19. Le Tissier P., Stoye J. P., Takeuchi Y., Patience C., Weiss R. A. 1997; Two sets of human-tropic pig retrovirus. Nature 389:681–682 [View Article][PubMed]
    [Google Scholar]
  20. Leung D. C., Lorincz M. C. 2012; Silencing of endogenous retroviruses: when and why do histone marks predominate?. Trends Biochem Sci 37:127–133 [View Article][PubMed]
    [Google Scholar]
  21. Linher K., Cheung Q., Baker P., Bedecarrats G., Shiota K., Li J. 2009; An epigenetic mechanism regulates germ cell-specific expression of the porcine Deleted in Azoospermia-Like (DAZL) gene. Differentiation 77:335–349 [View Article][PubMed]
    [Google Scholar]
  22. Lund A. H., Duch M., Lovmand J., Jørgensen P., Pedersen F. S. 1993; Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication. J Virol 67:7125–7130[PubMed]
    [Google Scholar]
  23. Magiorkinis G., Gifford R. J., Katzourakis A., De Ranter J., Belshaw R. 2012; Env-less endogenous retroviruses are genomic superspreaders. Proc Natl Acad Sci U S A 109:7385–7390 [View Article][PubMed]
    [Google Scholar]
  24. Mang R., Maas J., Chen X., Goudsmit J., van Der Kuyl A. C. 2001; Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. J Gen Virol 82:1829–1834[PubMed]
    [Google Scholar]
  25. Martins H., Villesen P. 2011; Improved integration time estimation of endogenous retroviruses with phylogenetic data. PLoS ONE 6:e14745 [View Article][PubMed]
    [Google Scholar]
  26. Matsui T., Leung D., Miyashita H., Maksakova I. A., Miyachi H., Kimura H., Tachibana M., Lorincz M. C., Shinkai Y. 2010; Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931 [View Article][PubMed]
    [Google Scholar]
  27. Meije Y., Tönjes R. R., Fishman J. A. 2010; Retroviral restriction factors and infectious risk in xenotransplantation. Am J Transplant 10:1511–1516 [View Article][PubMed]
    [Google Scholar]
  28. Mikkelsen T. S., Ku M., Jaffe D. B., Issac B., Lieberman E., Giannoukos G., Alvarez P., Brockman W., Kim T. K.other authors 2007; Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560 [View Article][PubMed]
    [Google Scholar]
  29. Modin C., Lund A. H., Schmitz A., Duch M., Pedersen F. S. 2000; Alleviation of murine leukemia virus repression in embryonic carcinoma cells by genetically engineered primer binding sites and artificial tRNA primers. Virology 278:368–379 [View Article][PubMed]
    [Google Scholar]
  30. Morita S., Kojima T., Kitamura T. 2000; Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066 [View Article][PubMed]
    [Google Scholar]
  31. Mueller N. J., Takeuchi Y., Mattiuzzo G., Scobie L. 2011; Microbial safety in xenotransplantation. Curr Opin Organ Transplant 16:201–206 [View Article][PubMed]
    [Google Scholar]
  32. Naldini L., Blömer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. 1996; In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267 [View Article][PubMed]
    [Google Scholar]
  33. Nascimento F. F., Gongora J., Charleston M., Tristem M., Lowden S., Moran C. 2011; Evolution of endogenous retroviruses in the Suidae: evidence for different viral subpopulations in African and Eurasian host species. BMC Evol Biol 11:139 [View Article][PubMed]
    [Google Scholar]
  34. Niebert M., Tönjes R. R. 2005; Evolutionary spread and recombination of porcine endogenous retroviruses in the suiformes. J Virol 79:649–654 [View Article][PubMed]
    [Google Scholar]
  35. Park S. J., Huh J. W., Kim D. S., Ha H. S., Jung Y. D., Ahn K., Oh K. B., Park E. W., Chang K. T., Kim H. S. 2010; Analysis of the molecular and regulatory properties of active porcine endogenous retrovirus gamma-1 long terminal repeats in kidney tissues of the NIH-Miniature pig. Mol Cells 30:319–325 [View Article][PubMed]
    [Google Scholar]
  36. Patience C., Takeuchi Y., Weiss R. A. 1997; Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286 [View Article][PubMed]
    [Google Scholar]
  37. Patience C., Switzer W. M., Takeuchi Y., Griffiths D. J., Goward M. E., Heneine W., Stoye J. P., Weiss R. A. 2001; Multiple groups of novel retroviral genomes in pigs and related species. J Virol 75:2771–2775 [View Article][PubMed]
    [Google Scholar]
  38. Petkov S. G., Anderson G. B. 2008; Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture. Cloning Stem Cells 10:263–276 [View Article][PubMed]
    [Google Scholar]
  39. Petkov S. G., Marks H., Klein T., Garcia R. S., Gao Y., Stunnenberg H., Hyttel P. 2011; In vitro culture and characterization of putative porcine embryonic germ cells derived from domestic breeds and Yucatan mini pig embryos at days 20–24 of gestation. Stem Cell Res (Amst) 6:226–237 [View Article][PubMed]
    [Google Scholar]
  40. Rowe H. M., Jakobsson J., Mesnard D., Rougemont J., Reynard S., Aktas T., Maillard P. V., Layard-Liesching H., Verp S.other authors 2010; KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240 [View Article][PubMed]
    [Google Scholar]
  41. Schmidt P., Forsman A., Andersson G., Blomberg J., Korsgren O. 2005; Pig islet xenotransplantation: activation of porcine endogenous retrovirus in the immediate post-transplantation period. Xenotransplantation 12:450–456 [View Article][PubMed]
    [Google Scholar]
  42. Shim H., Gutiérrez-Adán A., Chen L. R., BonDurant R. H., Behboodi E., Anderson G. B. 1997; Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57:1089–1095 [View Article][PubMed]
    [Google Scholar]
  43. Steinbiss S., Willhoeft U., Gremme G., Kurtz S. 2009; Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res 37:7002–7013 [View Article][PubMed]
    [Google Scholar]
  44. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega 4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  45. Tönjes R. R., Niebert M. 2003; Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J Virol 77:12363–12368 [View Article][PubMed]
    [Google Scholar]
  46. Wagner T., Jung M. 2012; New lysine methyltransferase drug targets in cancer. Nat Biotechnol 30:622–623 [View Article][PubMed]
    [Google Scholar]
  47. Weiss R. A. 2006; The discovery of endogenous retroviruses. Retrovirology 3:67 [View Article][PubMed]
    [Google Scholar]
  48. Wolf D., Goff S. P. 2007; TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131:46–57 [View Article][PubMed]
    [Google Scholar]
  49. Wolf D., Goff S. P. 2009; Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458:1201–1204 [View Article][PubMed]
    [Google Scholar]
  50. Wolf D., Hug K., Goff S. P. 2008; TRIM28 mediates primer binding site-targeted silencing of Lys1,2 tRNA-utilizing retroviruses in embryonic cells. Proc Natl Acad Sci U S A 105:12521–12526 [View Article][PubMed]
    [Google Scholar]
  51. Yoder J. A., Walsh C. P., Bestor T. H. 1997; Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049288-0
Loading
/content/journal/jgv/10.1099/vir.0.049288-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error