1887

Abstract

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres . RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.049254-0
2013-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1691.html?itemId=/content/journal/jgv/10.1099/vir.0.049254-0&mimeType=html&fmt=ahah

References

  1. Bem R. A., Domachowske J. B., Rosenberg H. F.. ( 2011; ). Animal models of human respiratory syncytial virus disease. . Am J Physiol Lung Cell Mol Physiol 301:, L148–L156. [CrossRef] [PubMed]
    [Google Scholar]
  2. Buckley S. T., Ehrhardt C.. ( 2010; ). The receptor for advanced glycation end products (RAGE) and the lung. . J Biomed Biotechnol 2010:, 917108. [CrossRef] [PubMed]
    [Google Scholar]
  3. Collins P. L., Melero J. A.. ( 2011; ). Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. . Virus Res 162:, 80–99. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ferhani N., Letuve S., Kozhich A., Thibaudeau O., Grandsaigne M., Maret M., Dombret M.-C., Sims G. P., Kolbeck R.. & other authors ( 2010; ). Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. . Am J Respir Crit Care Med 181:, 917–927. [CrossRef] [PubMed]
    [Google Scholar]
  5. Hallak L. K., Spillmann D., Collins P. L., Peeples M. E.. ( 2000; ). Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. . J Virol 74:, 10508–10513. [CrossRef] [PubMed]
    [Google Scholar]
  6. Huang K., Lawlor H., Tang R., MacGill R. S., Ulbrandt N. D., Wu H.. ( 2010a; ). Recombinant respiratory syncytial virus F protein expression is hindered by inefficient nuclear export and mRNA processing. . Virus Genes 40:, 212–221. [CrossRef] [PubMed]
    [Google Scholar]
  7. Huang K., Incognito L., Cheng X., Ulbrandt N. D., Wu H.. ( 2010b; ). Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. . J Virol 84:, 8132–8140. [CrossRef] [PubMed]
    [Google Scholar]
  8. Johnson S., Oliver C., Prince G. A., Hemming V. G., Pfarr D. S., Wang S. C., Dormitzer M., O’Grady J., Koenig S.. & other authors ( 1997; ). Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. . J Infect Dis 176:, 1215–1224. [CrossRef] [PubMed]
    [Google Scholar]
  9. Johnson J. E., Gonzales R. A., Olson S. J., Wright P. F., Graham B. S.. ( 2007; ). The histopathology of fatal untreated human respiratory syncytial virus infection. . Mod Pathol 20:, 108–119. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kahn J. S., Schnell M. J., Buonocore L., Rose J. K.. ( 1999; ). Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. . Virology 254:, 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  11. König P., Giesow K., Schuldt K., Buchholz U. J., Keil G. M.. ( 2004; ). A novel protein expression strategy using recombinant bovine respiratory syncytial virus (BRSV): modifications of the peptide sequence between the two furin cleavage sites of the BRSV fusion protein yield secreted proteins, but affect processing and function of the BRSV fusion protein. . J Gen Virol 85:, 1815–1824. [CrossRef] [PubMed]
    [Google Scholar]
  12. Leyssen P., De Clercq E., Neyts J.. ( 2008; ). Molecular strategies to inhibit the replication of RNA viruses. . Antiviral Res 78:, 9–25. [CrossRef] [PubMed]
    [Google Scholar]
  13. Meissner H. C., Rennels M. B., Pickering L. K., Hall C. B.. ( 2004; ). Risk of severe respiratory syncytial virus disease, identification of high risk infants and recommendations for prophylaxis with palivizumab. . Pediatr Infect Dis J 23:, 284–285. [CrossRef] [PubMed]
    [Google Scholar]
  14. Melikyan G. B., Markosyan R. M., Hemmati H., Delmedico M. K., Lambert D. M., Cohen F. S.. ( 2000; ). Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. . J Cell Biol 151:, 413–424. [CrossRef] [PubMed]
    [Google Scholar]
  15. Meyerholz D. K., Grubor B., Fach S. J., Sacco R. E., Lehmkuhl H. D., Gallup J. M., Ackermann M. R.. ( 2004; ). Reduced clearance of respiratory syncytial virus infection in a preterm lamb model. . Microbes Infect 6:, 1312–1319. [CrossRef] [PubMed]
    [Google Scholar]
  16. Miller A. L., Sims G. P., Brewah Y. A., Rebelatto M. C., Kearley J., Benjamin E., Keller A. E., Brohawn P., Herbst R.. & other authors ( 2012; ). Opposing roles of membrane and soluble forms of receptor for advanced glycation endproducts (RAGE) in primary respiratory syncytial virus infection. . J Infect Dis 205:, 1311–1320. [CrossRef] [PubMed]
    [Google Scholar]
  17. Morton C. J., Cameron R., Lawrence L. J., Lin B., Lowe M., Luttick A., Mason A., McKimm-Breschkin J., Parker M. W.. & other authors ( 2003; ). Structural characterization of respiratory syncytial virus fusion inhibitor escape mutants: homology model of the F protein and a syncytium formation assay. . Virology 311:, 275–288. [CrossRef] [PubMed]
    [Google Scholar]
  18. Neilson K. A., Yunis E. J.. ( 1990; ). Demonstration of respiratory syncytial virus in an autopsy series. . Pediatr Pathol 10:, 491–502. [CrossRef] [PubMed]
    [Google Scholar]
  19. Olivier A., Gallup J., de Macedo M. M., Varga S. M., Ackermann M.. ( 2009; ). Human respiratory syncytial virus A2 strain replicates and induces innate immune responses by respiratory epithelia of neonatal lambs. . Int J Exp Pathol 90:, 431–438. [CrossRef] [PubMed]
    [Google Scholar]
  20. Papin J. F., Wolf R. F., Kosanke S. D., Jenkins J. D., Moore S. N., Anderson M. P., Welliver R. C. Sr. ( 2013; ). Infant baboons infected with respiratory syncytial virus develop clinical and pathological changes that parallel those of human infants. . Am J Physiol Lung Cell Mol Physiol 304:, L530–L539. [CrossRef] [PubMed]
    [Google Scholar]
  21. Park H., Adsit F. G., Boyington J. C.. ( 2010; ). The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. . J Biol Chem 285:, 40762–40770. [CrossRef] [PubMed]
    [Google Scholar]
  22. Raucci A., Cugusi S., Antonelli A., Barabino S. M., Monti L., Bierhaus A., Reiss K., Saftig P., Bianchi M. E.. ( 2008; ). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). . FASEB J 22:, 3716–3727. [CrossRef] [PubMed]
    [Google Scholar]
  23. Russell C. J., Jardetzky T. S., Lamb R. A.. ( 2001; ). Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. . EMBO J 20:, 4024–4034. [CrossRef] [PubMed]
    [Google Scholar]
  24. Shirasawa M., Fujiwara N., Hirabayashi S., Ohno H., Iida J., Makita K., Hata Y.. ( 2004; ). Receptor for advanced glycation end-products is a marker of type I lung alveolar cells. . Genes Cells 9:, 165–174. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sidwell R. W., Barnard D. L.. ( 2006; ). Respiratory syncytial virus infections: recent prospects for control. . Antiviral Res 71:, 379–390. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sims G. P., Rowe D. C., Rietdijk S. T., Herbst R., Coyle A. J.. ( 2010; ). HMGB1 and RAGE in inflammation and cancer. . Annu Rev Immunol 28:, 367–388. [CrossRef] [PubMed]
    [Google Scholar]
  27. Sow F. B., Gallup J. M., Olivier A., Krishnan S., Patera A. C., Suzich J., Ackermann M. R.. ( 2011; ). Respiratory syncytial virus is associated with an inflammatory response in lungs and architectural remodeling of lung-draining lymph nodes of newborn lambs. . Am J Physiol Lung Cell Mol Physiol 300:, L12–L24. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tayyari F., Marchant D., Moraes T. J., Duan W., Mastrangelo P., Hegele R. G.. ( 2011; ). Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. . Nat Med 17:, 1132–1135. [CrossRef] [PubMed]
    [Google Scholar]
  29. Techaarpornkul S., Barretto N., Peeples M. E.. ( 2001; ). Functional analysis of recombinant respiratory syncytial virus deletion mutants lacking the small hydrophobic and/or attachment glycoprotein gene. . J Virol 75:, 6825–6834. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tristram D. A., Hicks W. Jr, Hard R.. ( 1998; ). Respiratory syncytial virus and human bronchial epithelium. . Arch Otolaryngol Head Neck Surg 124:, 777–783. [CrossRef] [PubMed]
    [Google Scholar]
  31. Uchida T., Shirasawa M., Ware L. B., Kojima K., Hata Y., Makita K., Mednick G., Matthay Z. A., Matthay M. A.. ( 2006; ). Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. . Am J Respir Crit Care Med 173:, 1008–1015. [CrossRef] [PubMed]
    [Google Scholar]
  32. Villenave R., Thavagnanam S., Sarlang S., Parker J., Douglas I., Skibinski G., Heaney L. G., McKaigue J. P., Coyle P. V.. & other authors ( 2012; ). In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. . Proc Natl Acad Sci U S A 109:, 5040–5045. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wu H., Pfarr D. S., Johnson S., Brewah Y. A., Woods R. M., Patel N. K., White W. I., Young J. F., Kiener P. A.. ( 2007; ). Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. . J Mol Biol 368:, 652–665. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yamakawa N., Uchida T., Matthay M. A., Makita K.. ( 2011; ). Proteolytic release of the receptor for advanced glycation end products from in vitro and in situ alveolar epithelial cells. . Am J Physiol Lung Cell Mol Physiol 300:, L516–L525. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yin H. S., Paterson R. G., Wen X., Lamb R. A., Jardetzky T. S.. ( 2005; ). Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. . Proc Natl Acad Sci U S A 102:, 9288–9293. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yin H. S., Wen X., Paterson R. G., Lamb R. A., Jardetzky T. S.. ( 2006; ). Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. . Nature 439:, 38–44. [CrossRef] [PubMed]
    [Google Scholar]
  37. Zhang L., Peeples M. E., Boucher R. C., Collins P. L., Pickles R. J.. ( 2002; ). Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. . J Virol 76:, 5654–5666. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.049254-0
Loading
/content/journal/jgv/10.1099/vir.0.049254-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error